An earthquake doublet (Mw 7.8 and Mw 7.6) occurred on the East Anatolian Fault Zone (EAFZ) on February 6th, 2023. The events produced significant ground motions and caused major impacts to life and infrastructure throughout SE Türkiye and NW Syria. Here we show the results of earthquake relocations of the first 11 days of aftershocks and rupture models for both events inferred from the kinematic inversion of HR-GNSS and strong motion data considering a multi-fault, 3D geometry. We find that the first event nucleated on a previously unmapped fault before transitioning to the East Anatolian Fault (EAF) rupturing for ~350 km and that the second event ruptured the Sürgü fault for ~160 km. Maximum rupture speeds were estimated to be 3.2 km/s for the Mw 7.8 event. For the Mw 7.6 earthquake, we find super-shear rupture at 4.8 km/s westward but sub-shear eastward rupture at 2.8 km/s. Peak slip for both events were as large as ~8m and ~6m, respectively.
This study has investigated the rupture process of the 23 October, 2011, Van (Turkey) earthquake (M w = 7.1) by using inversion of teleseismic waveform analysis and its tectonic implications. Focal parameters of the main shock and 21 aftershocks were obtained by using the rst motion polarities of regional P-waves. The rst results for the source rupture process were derived from broadband teleseismic P-waves. The main outcomes of the analysis are: (a) the main rupture is located around the initial break point, and the maximum slip amount was 3.6 m; (b) the size of the main fault plane area was about 40 km in length and 20 km in width, the duration of rupture was approximately 19 seconds and the seismic moment of the earthquake was estimated to be 5.53 × 10 19 N m (M w = 7.1); (c) the rupture gradually expanded near the hypocenter and propagated both northeast and southwest, but mainly to the southwest. Tectonic implications of the earthquake were de ned by eld observations. The 23 October, 2011, Van earthquake occurred on a main thrust fault plane trending NE-SW between Lake Van and Lake Erçek located in the East Anatolian compressional province. This main fault plane and the secondary structural elements were generated by a continental-continental collision taking place in a region located 200 km north of the the Bitlis-Zagros Suture Zone.
An earthquake doublet (Mw 7.8 and Mw 7.6) occurred on the East Anatolian Fault Zone (EAFZ) on February 6th, 2023. The events produced significant ground motions and caused major impacts to life and infrastructure throughout SE Türkiye and NW Syria. Here we show the results of earthquake relocations of the first 11 days of aftershocks and rupture models for both events inferred from the kinematic inversion of HR-GNSS and strong motion data considering a multi-fault, 3D geometry. We find that the first event nucleated on a previously unmapped fault before transitioning to the East Anatolian Fault (EAF) rupturing for ~ 350 km and that the second event ruptured the Sürgü fault for ~ 160 km. Maximum rupture speeds were estimated to be 3.2 km/s for the Mw 7.8 event. For the Mw 7.6 earthquake, we find super-shear rupture at 4.8 km/s westward but sub-shear eastward rupture at 2.8 km/s. Peak slip for both events were as large as ~8m and ~6m, respectively.
The 6 February 2023 Mw 7.8 Pazarcık and subsequent Mw 7.5 Elbistan earthquakes generated strong ground shaking that resulted in catastrophic human and economic loss across south-central Türkiye and northwest Syria. The rapid characterization of the earthquakes, including their location, size, fault geometries, and slip kinematics, is critical to estimate the impact of significant seismic events. The U.S. Geological Survey National Earthquake Information Center (NEIC) provides real-time monitoring of earthquakes globally, including rapid source characterization and impact estimates. Here, we describe the seismic characterization products generated and made available by the NEIC over the two weeks following the start of the earthquake sequence in southeast Türkiye, their evolution, and how they inform our understanding of regional seismotectonics and hazards. The kinematics of rupture for the two earthquakes was complex, involving multiple fault segments. Therefore, incorporating observations from rupture mapping was critical for characterizing these events. Dense local datasets facilitated robust source characterization and impact assessment once these observations were obtained and converted to NEIC product input formats. We discuss how we may improve the timeliness of NEIC products for rapid assessment of future seismic hazards, particularly in the case of complex ruptures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.