Graph embeddings have gained huge popularity in the recent years as a powerful tool to analyze social networks. However, no prior works have studied potential bias issues inherent within graph embedding. In this paper, we make a first attempt in this direction. In particular, we concentrate on the fairness of node2vec, a popular graph embedding method. Our analyses on two real-world datasets demonstrate the existence of bias in node2vec when used for friendship recommendation. We, therefore, propose a fairness-aware embedding method, namely Fairwalk, which extends node2vec. Experimental results demonstrate that Fairwalk reduces bias under multiple fairness metrics while still preserving the utility.
A number of clustering methods introduced for analysis of gene expression data for extracting potential relationships among the genes are studied and reported in this paper. An effective unsupervised method (TDAC) is proposed for simultaneous detection of outliers and biologically relevant co-expressed patterns. Effectiveness of TDAC is established in comparison to its other competing algorithms over six publicly available benchmark gene expression datasets in terms of both internal and external validity measures. Main attractions of TDAC are: (a) it does not require discretisation, (b) it is capable of identifying biologically relevant gene co-expressed patterns as well as outlier genes(s), (c) it is cost-effective in terms of time and space, (d) it does not require the number of clusters a priori, and (e) it is free from the restrictions of using any proximity measure.
Hashtag has emerged as a widely used concept of popular culture and campaigns, but its implications on people's privacy have not been investigated so far. In this paper, we present the first systematic analysis of privacy issues induced by hashtags. We concentrate in particular on location, which is recognized as one of the key privacy concerns in the Internet era. By relying on a random forest model, we show that we can infer a user's precise location from hashtags with accuracy of 70% to 76%, depending on the city. To remedy this situation, we introduce a system called Tagvisor that systematically suggests alternative hashtags if the user-selected ones constitute a threat to location privacy. Tagvisor realizes this by means of three conceptually different obfuscation techniques and a semantics-based metric for measuring the consequent utility loss. Our findings show that obfuscating as little as two hashtags already provides a near-optimal trade-off between privacy and utility in our dataset. This in particular renders Tagvisor highly time-efficient, and thus, practical in real-world settings.
Hashtag has emerged as a widely used concept of popular culture and campaigns, but its implications on people's privacy have not been investigated so far. In this paper, we present the first systematic analysis of privacy issues induced by hashtags. We concentrate in particular on location, which is recognized as one of the key privacy concerns in the Internet era. By relying on a random forest model, we show that we can infer a user's precise location from hashtags with accuracy of 70% to 76%, depending on the city. To remedy this situation, we introduce a system called Tagvisor that systematically suggests alternative hashtags if the user-selected ones constitute a threat to location privacy. Tagvisor realizes this by means of three conceptually different obfuscation techniques and a semantics-based metric for measuring the consequent utility loss. Our findings show that obfuscating as little as two hashtags already provides a near-optimal trade-off between privacy and utility in our dataset. This in particular renders Tagvisor highly time-efficient, and thus, practical in real-world settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.