Sodium ion micro-solvated clusters, [Na(H2O) n]+, n = 1–7, were completed by (DFT) density functional theory at B3LYP/6-311+G(d,p) level in the gaseous phase. At the ambient situation, the four, five and six micro-solvated configurations can convert from each other. The investigation of the sequential water binding energy on Na+ obviously indicates that the influence of Na+ on the neighboring water molecules goes beyond the first solvation layer with the hydration number of 5. The hydration number of Na+ is 5 and the hydration space (rNa-O) is 2.43 Å. The current study displays that all our simulations have an brilliant harmony with the diffraction result from X-ray scattering study. The vibration frequency of H2O solvent was also determined. This work is important for additional identification of the Na+(H2O)n clusters in aqueous medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.