Summary Background Ten-valent pneumococcal conjugate vaccine (PCV10), delivered at 6, 10, and 14 weeks of age was introduced in Kenya in January, 2011, accompanied by a catch-up campaign in Kilifi County for children aged younger than 5 years. Coverage with at least two PCV10 doses in children aged 2–11 months was 80% in 2011 and 84% in 2016; coverage with at least one dose in children aged 12–59 months was 66% in 2011 and 87% in 2016. We aimed to assess PCV10 effect against nasopharyngeal carriage and invasive pneumococcal disease (IPD) in children and adults in Kilifi County. Methods This study was done at the KEMRI-Wellcome Trust Research Programme among residents of the Kilifi Health and Demographic Surveillance System, a rural community on the Kenyan coast covering an area of 891 km 2 . We linked clinical and microbiological surveillance for IPD among admissions of all ages at Kilifi County Hospital, Kenya, which serves the community, to the Kilifi Health and Demographic Surveillance System from 1999 to 2016. We calculated the incidence rate ratio (IRR) comparing the prevaccine (Jan 1, 1999–Dec 31, 2010) and postvaccine (Jan 1, 2012–Dec 31, 2016) eras, adjusted for confounding, and reported percentage reduction in IPD as 1 minus IRR. Annual cross-sectional surveys of nasopharyngeal carriage were done from 2009 to 2016. Findings Surveillance identified 667 cases of IPD in 3 211 403 person-years of observation. Yearly IPD incidence in children younger than 5 years reduced sharply in 2011 following vaccine introduction and remained low (PCV10-type IPD: 60·8 cases per 100 000 in the prevaccine era vs 3·2 per 100 000 in the postvaccine era [adjusted IRR 0·08, 95% CI 0·03–0·22]; IPD caused by any serotype: 81·6 per 100 000 vs 15·3 per 100 000 [0·32, 0·17–0·60]). PCV10-type IPD also declined in the post-vaccination era in unvaccinated age groups (<2 months [no cases in the postvaccine era], 5–14 years [adjusted IRR 0·26, 95% CI 0·11–0·59], and ≥15 years [0·19, 0·07–0·51]). Incidence of non-PCV10-type IPD did not differ between eras. In children younger than 5 years, PCV10-type carriage declined between eras (age-standardised adjusted prevalence ratio 0·26, 95% CI 0·19–0·35) and non-PCV10-type carriage increased (1·71, 1·47–1·99). Interpretation Introduction of PCV10 in Kenya, accompanied by a catch-up campaign, resulted in a substantial reduction in PCV10-type IPD in children and adults without significant replacement disease. Although the catch-up campaign is likely to have brought forward the benefits by several years, the study suggests that routine infant PCV10 immunisation programmes will provide substantial direct and indirect protection in low-income settings in tropical Africa. Funding Gavi, The Vaccine Alliance and The Wellcome Trust of Great Britain.
SummaryBackgroundThe effect of 7-valent pneumococcal conjugate vaccine (PCV) in developed countries was enhanced by indirect protection of unvaccinated individuals, mediated by reduced nasopharyngeal carriage of vaccine-serotype pneumococci. The potential indirect protection of 10-valent PCV (PCV10) in a developing country setting is unknown. We sought to estimate the effectiveness of introduction of PCV10 in Kenya against carriage of vaccine serotypes and its effect on other bacteria.MethodsPCV10 was introduced into the infant vaccination programme in Kenya in January, 2011, accompanied by a catch-up campaign in Kilifi County for children aged younger than 5 years. We did annual cross-sectional carriage studies among an age-stratified, random population sample in the 2 years before and 2 years after PCV10 introduction. A nasopharyngeal rayon swab specimen was collected from each participant and was processed in accordance with WHO recommendations. Prevalence ratios of carriage before and after introduction of PCV10 were calculated by log-binomial regression.FindingsAbout 500 individuals were enrolled each year (total n=2031). Among children younger than 5 years, the baseline (2009–10) carriage prevalence was 34% for vaccine-serotype Streptococcus pneumoniae, 41% for non-vaccine-serotype Streptococcus pneumoniae, and 54% for non-typeable Haemophilus influenzae. After PCV10 introduction (2011–12), these percentages were 13%, 57%, and 40%, respectively. Adjusted prevalence ratios were 0·36 (95% CI 0·26–0·51), 1·37 (1·13–1·65), and 0·62 (0·52–0·75), respectively. Among individuals aged 5 years or older, the adjusted prevalence ratios for vaccine-serotype and non-vaccine-serotype S pneumoniae carriage were 0·34 (95% CI 0·18–0·62) and 1·13 (0·92–1·38), respectively. There was no change in prevalence ratio for Staphylococcus aureus (adjusted prevalence ratio for those <5 years old 1·02, 95% CI 0·52–1·99, and for those ≥5 years old 0·90, 0·60–1·35).InterpretationAfter programmatic use of PCV10 in Kilifi, carriage of vaccine serotypes was reduced by two-thirds both in children younger than 5 years and in older individuals. These findings suggest that PCV10 introduction in Africa will have substantial indirect effects on invasive pneumococcal disease.FundingGAVI Alliance and Wellcome Trust.
Summary Background Pneumococcal conjugate vaccines (PCV) are highly protective against invasive pneumococcal disease caused by vaccine serotypes, but the burden of pneumococcal disease in low-income and middle-income countries is dominated by pneumonia, most of which is non-bacteraemic. We examined the effect of 10-valent PCV on the incidence of pneumonia in Kenya. Methods We linked prospective hospital surveillance for clinically-defined WHO severe or very severe pneumonia at Kilifi County Hospital, Kenya, from 2002 to 2015, to population surveillance at Kilifi Health and Demographic Surveillance System, comprising 45 000 children younger than 5 years. Chest radiographs were read according to a WHO standard. A 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PCV10) was introduced in Kenya in January, 2011. In Kilifi, there was a three-dose catch-up campaign for infants (aged <1 year) and a two-dose catch-up campaign for children aged 1–4 years, between January and March, 2011. We estimated the effect of PCV10 on the incidence of clinically-defined and radiologically-confirmed pneumonia through interrupted time-series analysis, accounting for seasonal and temporal trends. Findings Between May 1, 2002 and March 31, 2015, 44 771 children aged 2–143 months were admitted to Kilifi County Hospital. We excluded 810 admissions between January and March, 2011, and 182 admissions during nurses' strikes. In 2002–03, the incidence of admission with clinically-defined pneumonia was 2170 per 100 000 in children aged 2–59 months. By the end of the catch-up campaign in 2011, 4997 (61·1%) of 8181 children aged 2–11 months had received at least two doses of PCV10 and 23 298 (62·3%) of 37 416 children aged 12–59 months had received at least one dose. Across the 13 years of surveillance, the incidence of clinically-defined pneumonia declined by 0·5% per month, independent of vaccine introduction. There was no secular trend in the incidence of radiologically-confirmed pneumonia over 8 years of study. After adjustment for secular trend and season, incidence rate ratios for admission with radiologically-confirmed pneumonia, clinically-defined pneumonia, and diarrhoea (control condition), associated temporally with PCV10 introduction and the catch-up campaign, were 0·52 (95% CI 0·32–0·86), 0·73 (0·54–0·97), and 0·63 (0·31–1·26), respectively. Immediately before PCV10 was introduced, the annual incidence of clinically-defined pneumonia was 1220 per 100 000; this value was reduced by 329 per 100 000 at the point of PCV10 introduction. Interpretation Over 13 years, admissions to Kilifi County Hospital for clinically-defined pneumonia decreased sharply (by 27%) in association with the introduction of PCV10, as did the incidence of radiologically-confirmed pneumonia (by 48%). The burden of hospital admissions for childhood pneumonia in Kilifi, Kenya, has been re...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.