The spread of SARS-CoV-2 in Africa is poorly described. The first case of SARS-CoV-2 in Kenya was reported on March 12, 2020 and an overwhelming number of cases and deaths were expected but by July 31, 2020 there were only 20,636 cases and 341 deaths. However, the extent of SARS-CoV-2 exposure in the community remains unknown. We determined the prevalence of anti–SARS-CoV-2 IgG among blood donors in Kenya in April-June 2020. Crude seroprevalence was 5.6% (174/3098). Population-weighted, test-performance-adjusted national seroprevalence was 4.3% (95% CI 2.9–5.8%) and was highest in urban counties, Mombasa (8.0%), Nairobi (7.3%) and Kisumu (5.5%). SARS-CoV-2 exposure is more extensive than indicated by case-based surveillance and these results will help guide the pandemic response in Kenya, and across Africa.
Background There are no data on SARS-CoV-2 seroprevalence in Africa though the COVID-19 epidemic curve and reported mortality differ from patterns seen elsewhere. We estimated the anti-SARS-CoV-2 antibody prevalence among blood donors in Kenya. Methods We measured anti-SARS-CoV-2 spike IgG prevalence by ELISA on residual blood donor samples obtained between April 30 and June 16, 2020. Assay sensitivity and specificity were 83% (95% CI 59, 96%) and 99.0% (95% CI 98.1, 99.5%), respectively. National seroprevalence was estimated using Bayesian multilevel regression and post-stratification to account for non-random sampling with respect to age, sex and region, adjusted for assay performance. Results Complete data were available for 3098 of 3174 donors, aged 15-64 years. By comparison with the Kenyan population, the sample over-represented males (82% versus 49%), adults aged 25-34 years (40% versus 27%) and residents of coastal Counties (49% versus 9%). Crude overall seroprevalence was 5.6% (174/3098). Population-weighted, test-adjusted national seroprevalence was 5.2% (95% CI 3.7, 7.1%). Seroprevalence was highest in the 3 largest urban Counties; Mombasa (9.3% [95% CI 6.4, 13.2%)], Nairobi (8.5% [95% CI 4.9, 13.5%]) and Kisumu (6.5% [95% CI 3.3, 11.2%]). Conclusions We estimate that 1 in 20 adults in Kenya had SARS-CoV-2 antibodies during the study period. By the median date of our survey, only 2093 COVID-19 cases and 71 deaths had been reported through the national screening system. This contrasts, by several orders of magnitude, with the numbers of cases and deaths reported in parts of Europe and America when seroprevalence was similar.
Summary Background Ten-valent pneumococcal conjugate vaccine (PCV10), delivered at 6, 10, and 14 weeks of age was introduced in Kenya in January, 2011, accompanied by a catch-up campaign in Kilifi County for children aged younger than 5 years. Coverage with at least two PCV10 doses in children aged 2–11 months was 80% in 2011 and 84% in 2016; coverage with at least one dose in children aged 12–59 months was 66% in 2011 and 87% in 2016. We aimed to assess PCV10 effect against nasopharyngeal carriage and invasive pneumococcal disease (IPD) in children and adults in Kilifi County. Methods This study was done at the KEMRI-Wellcome Trust Research Programme among residents of the Kilifi Health and Demographic Surveillance System, a rural community on the Kenyan coast covering an area of 891 km 2 . We linked clinical and microbiological surveillance for IPD among admissions of all ages at Kilifi County Hospital, Kenya, which serves the community, to the Kilifi Health and Demographic Surveillance System from 1999 to 2016. We calculated the incidence rate ratio (IRR) comparing the prevaccine (Jan 1, 1999–Dec 31, 2010) and postvaccine (Jan 1, 2012–Dec 31, 2016) eras, adjusted for confounding, and reported percentage reduction in IPD as 1 minus IRR. Annual cross-sectional surveys of nasopharyngeal carriage were done from 2009 to 2016. Findings Surveillance identified 667 cases of IPD in 3 211 403 person-years of observation. Yearly IPD incidence in children younger than 5 years reduced sharply in 2011 following vaccine introduction and remained low (PCV10-type IPD: 60·8 cases per 100 000 in the prevaccine era vs 3·2 per 100 000 in the postvaccine era [adjusted IRR 0·08, 95% CI 0·03–0·22]; IPD caused by any serotype: 81·6 per 100 000 vs 15·3 per 100 000 [0·32, 0·17–0·60]). PCV10-type IPD also declined in the post-vaccination era in unvaccinated age groups (<2 months [no cases in the postvaccine era], 5–14 years [adjusted IRR 0·26, 95% CI 0·11–0·59], and ≥15 years [0·19, 0·07–0·51]). Incidence of non-PCV10-type IPD did not differ between eras. In children younger than 5 years, PCV10-type carriage declined between eras (age-standardised adjusted prevalence ratio 0·26, 95% CI 0·19–0·35) and non-PCV10-type carriage increased (1·71, 1·47–1·99). Interpretation Introduction of PCV10 in Kenya, accompanied by a catch-up campaign, resulted in a substantial reduction in PCV10-type IPD in children and adults without significant replacement disease. Although the catch-up campaign is likely to have brought forward the benefits by several years, the study suggests that routine infant PCV10 immunisation programmes will provide substantial direct and indirect protection in low-income settings in tropical Africa. Funding Gavi, The Vaccine Alliance and The Wellcome Trust of Great Britain.
Background. Invasive salmonelloses are a major cause of morbidity and mortality in Africa, but the incidence and case fatality of each disease vary markedly by region. We aimed to describe the incidence, clinical characteristics, and antimicrobial susceptibility patterns of invasive salmonelloses among children and adults in Kilifi, Kenya.Methods. We analyzed integrated clinical and laboratory records for patients presenting to the Kilifi County Hospital between 1998 and 2014. We calculated incidence, and summarized clinical features and multidrug resistance.Results. Nontyphoidal Salmonella (NTS) accounted for 10.8% and 5.8% of bacteremia cases in children and adults, respectively, while Salmonella Typhi accounted for 0.5% and 2.1%, respectively. Among 351 NTS isolates serotyped, 160 (45.6%) were Salmonella Enteritidis and 152 (43.3%) were Salmonella Typhimurium. The incidence of NTS in children aged <5 years was 36.6 per 100 000 person-years, being highest in infants aged <7 days (174/100 000 person-years). The overall incidence of NTS in children varied markedly by location and declined significantly during the study period; the pattern of dominance of the NTS serotypes also shifted from Salmonella Enteritidis to Salmonella Typhimurium. Risk factors for invasive NTS disease were human immunodeficiency virus infection, malaria, and malnutrition; the case fatality ratio was 22.1% (71/321) in children aged <5 years and 36.7% (11/30) in adults. Multidrug resistance was present in 23.9% (84/351) of NTS isolates and 46.2% (12/26) of Salmonella Typhi isolates.Conclusions. In Kilifi, the incidence of invasive NTS was high, especially among newborn infants, but typhoid fever was uncommon. NTS remains an important cause of bacteremia in children <5 years of age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.