In the structural design of fast breeder reactors, irradiation effects and sodium environmental effects on structural materials have to be taken into account. In this paper, firstly, an evaluation procedure for irradiation effects on the mechanical properties of 316FR (FBR Grade 316 stainless steel), which is a newly developed stainless steel for the Japanese demonstration fast breeder reactor, is proposed. The procedure gives a limit of accumulated fast neutron fluence E>0.1 MeV as a function of temperature, so that the minimum tensile fracture elongation of 10 percent, which is the threshold for material to stay ductile, is maintained. Furthermore, the procedure determined a creep life reduction factor and a creep rate increase factor as a function of accumulated thermal neutron fluence E<0.4 eV, within the limitation of the accumulated fast neutron fluence, to account for the creep life reduction and the increase of creep rate due to irradiation. Secondly, an evaluation procedure for sodium environmental effects on the integrity of 316FR and modified 9Cr-1Mo steel was proposed. It gave a corrosion allowance as a function of temperature, oxygen content, and service time, based on corrosion tests. It determined that no correction factors that correspond to sodium environment on design allowable stresses, etc., are needed, because no adverse effects of sodium on the mechanical properties of 316FR and modified 9Cr-1Mo steel were to be expected in the service conditions of FBRs. Both the procedures have been incorporated into the Japanese Elevated Temperature Structural Design Guide for Demonstration Fast Breeder Reactor.
New 2012 edition of JSME code for design and construction of fast reactors (FRs code) was published by Japan society of mechanical engineers (JSME). Main topic of the current JSME FRs code 2012 edition is registration of the two new materials, 316FR and Mod.9Cr-1Mo steel. Besides the allowable strength values and material properties were standardized for the registration, the design margins for the new materials to the rules for the components and piping serviced at elevated temperature described in the JSME FRs code were assessed. To confirm the design margins, a series of the assessment program for the new materials to the conventional design rules was performed using the evaluation of the experimental data and finite element analysis. Namely, the design margin including the evaluation procedure of creep-fatigue damage, strain range and the others were assessed based on the background concept of the conventional JSME FRs code. Since a number of the evaluation procedures described in the JSME FRs code were investigated, a several topical assessments of these are reported in this paper. Besides the assessed results of the evaluation of the accumulated creep-fatigue damage and enhanced creep strain are reported, the assessments results of the design margin including the concept of the elastic follow-up originally applied in the JSME FRs code were covered in this paper. Through these assessments, the enough design margins for new materials to the rules were confirmed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.