Background: Although moderate exercise can benefit health, acute and vigorous exercise may have the opposite effect. Strenuous exercise can induce alterations in the physiology and viability of circulating leucocytes, which have a causal relationship with exercise-induced immune distress. Objectives: To investigate the use of mitochondrial transmembrane potential (MTP), a functional marker of the energy and viability status of leucocytes, for monitoring the immunomodulating effects of short-term, high-intensity exercise. Methods: 12 healthy volunteers with a mean VO 2 MAX of 70.4 ml/kg/min carried out 3 consecutive days of highintensity exercise (85% of VO 2 MAX for 30 min every day). Blood samples were collected at multiple time points immediately before and after each exercise session and at 24 and 72 h after the completion of exercise. Leucocyte MTP, apoptosis and circulatory inflammation markers were measured by flow cytometry and enzyme-linked immunosorbent assays. Results: MTP of peripheral blood leucocytes had declined immediately after the first exercise session and remained subnormal 24 h later. It did not normalise until 72 h after exercise. The sequential changes in MTP were consistent among the three leucocyte subpopulations (polymorphonuclear neutrophils, lymphocytes and monocytes) and were significant (p,0.05). Leucocytes displayed a gradual and incremental change in their propensity for apoptosis during and after exercise. Similarly, plasma concentrations of tumour necrosis factor-a and soluble Fas ligand were raised during the exercise sessions and had not normalised by 72 h after the completion of exercise. Correlation between changes in leucocyte MTP and plasma concentrations of tumour necrosis factor-a and soluble Fas ligand was variable, but significant for polymorphonuclear neutrophils and lymphocytes (p,0.05). Conclusions: Short-term, high-intensity exercise can lead to a significant and prolonged dysfunction of the mitochondrial energy status of peripheral blood leucocytes, which is accompanied by an increased propensity for apoptosis and raised pro-inflammatory mediators. These results support the immunosuppressive effects of excessive exercise and suggest that MTP is a useful marker of these effects.
Cardiac surgery with the use of cardiopulmonary bypass (CPB) is known to initiate systemic inflammatory responses that are associated with immune dysregulations, but the pathomechanisms underlying these changes remain elusive. Mitochondrial transmembrane potential (MTP) is an important determinant of leukocytic functions and viability, and may be altered as a part of the cellular responses to systemic inflammatory insults. Therefore, we examined MTP in three subsets of peripheral leukocytes in 18 patients receiving uncomplicated cardiac surgery involving CPB. The MTP of neutrophils and lymphocytes significantly increased, whereas that of monocytes significantly declined, after the surgery. The alterations in leukocytic MTP were transient, normalizing 3 days to 1 week after the surgery, and were accompanied by transient overproduction of intracellular oxidants, including nitric oxide and superoxide. Despite these perturbations, the viability status of leukocytes remained unaltered. Positive correlations were found between the changes of leukocyte MTP and various clinical parameters, implying that leukocyte mitochondrial alterations are parts of the systemic immune perturbations induced by the bypass surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.