In this study, ranges of model parameters are analyzed for robustness measures. In particular, the properties of partial mean and worst-case cost in robust optimization are investigated. The robust optimization models are considered as multiobjective problems having two objectives, the expected performance (i.e. expected cost) and a robustness measure (Suh, M. and Lee, T. (2001) Robust optimization method for the economic term in chemical process design and planning. Industrial & Engineering Chemical Research, 40, 5950-5959). The robust partial mean model is defined with objectives of expected value and partial mean. The robust worst-case model is defined with the objective of expected value and worst-case. They are proved to guarantee Pareto optimality, which should be satisfied for multiobjective optimization problems. A graphical representation of the meaningful parameter ranges is clearly defined with mathematical proofs. The robustness of the solutions is discussed, based on the analysis of the ranges of the parameters. Three meaningful ranges of the parameters are investigated to choose a proper target value for the robust partial mean model. The worst-case value obtained from the worst-case analysis is recommended as the most effective target value, in order to obtain the optimal solution in a tradeoff between robustness and optimality. The proposed analysis in this study is validated with examples in chemical process design problems.
Porphyrin-based polymers of intrinsic microporosity (PIMs) in photocatalytic degradation of a mustard-gas simulant (2-chloroethyl ethyl sulfide (2-CEES)) was demonstrated. Under blue-ultraviolet (UV) light-emitting diode (LED) irradiation, porphyrin-based PIMs PP-H2 and PP-Zn(II) worked as effective heterogeneous photocatalysts for oxidation of 2-CEES. Solvent played an important role in the conversion and selectivity of 2-CEES oxidation. When AcCN was used as a solvent, PP-H2and PP-Zn(II) demonstrated complete conversion of 2-CEES in 30 and 50 min, respectively, whereas they showed complete conversion at 60 and 70 min, respectively, when MeOH was used as a solvent. Moreover, these PIMs produced 2-chloroethyl ethyl sulfoxide (2-CEESO) as a major product with small amounts of 2-chloroethyl ethyl sulfone (2-CEESO[Formula: see text], ethyl methoxyethyl sulfoxide (EMSO), and vinyl sulfoxide (EVS) as side products in most solvents. However, when MeOH was used as a solvent, highly toxic 2-CEESO2 was not observed as a side product. Furthermore, these PIMs showed no significant changes in photocatalytic activity even after five cycles of reuse, indicating their high stability. Thus, the series of PIMs prepared herein can perform well as heterogeneous catalysts in photooxidation of 2-CEES under blue-UV LED light, with PP-H2 being the most effective oxidation catalyst, leading to fast conversion and high selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.