BackgroundLiver is an important metabolic organ that plays a critical role in lipid synthesis, degradation, and transport; however, the molecular regulatory mechanisms of lipid metabolism remain unclear in chicken. In this study, RNA-Seq technology was used to investigate differences in expression profiles of hepatic lipid metabolism-related genes and associated pathways between juvenile and laying hens. The study aimed to broaden the understanding of liver lipid metabolism in chicken, and thereby to help improve laying performance in the poultry industry.ResultsRNA-Seq analysis was carried out on total RNA harvested from the liver of juvenile (n = 3) and laying (n = 3) hens. Compared with juvenile hens, 2567 differentially expressed genes (1082 up-regulated and 1485 down-regulated) with P ≤ 0.05 were obtained in laying hens, and 960 of these genes were significantly differentially expressed (SDE) at a false discovery rate (FDR) of ≤0.05 and fold-change ≥2 or ≤0.5. In addition, most of the 198 SDE novel genes (91 up-regulated and 107 down-regulated) were discovered highly expressed, and 332 SDE isoforms were identified. Gene ontology (GO) enrichment and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that the SDE genes were most enrichment in steroid biosynthesis, PPAR signaling pathway, biosynthesis of unsaturated fatty acids, glycerophospholipid metabolism, three amino acid pathways, and pyruvate metabolism (P ≤ 0.05). The top significantly enriched GO terms among the SDE genes included lipid biosynthesis, cholesterol and sterol metabolic, and oxidation reduction, indicating that principal lipogenesis occurred in the liver of laying hens.ConclusionsThis study suggests that the majority of changes at the transcriptome level in laying hen liver were closely related to fat metabolism. Some of the SDE uncharacterized novel genes and alternative splicing isoforms that were detected might also take part in lipid metabolism, although this needs further investigation. This study provides valuable information about the expression profiles of mRNAs from chicken liver, and in-depth functional investigations of these mRNAs could provide new insights into the molecular networks of lipid metabolism in chicken liver.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1943-0) contains supplementary material, which is available to authorized users.
Laying performance is an important economic trait in hens, and this physiological process is largely influenced by the liver function. The livers of hens at 20- and 30-week-old stages were investigated using the next generation sequencing to identify the differences of microRNA expression profiles. Compared with the 20-week-old hens, 67 down- and 13 up-regulated microRNAs were verified to be significant differentially expressed (false discovery rate, FDR ≤ 0.05) (SDE) in the 30-week-old. We also identified 13 down- and 6 up-regulated novel differentially expressed (DE) microRNAs. miR-22-3p and miR-146b-5p, which exhibit critical roles in mammalian lipid metabolism, showed the most abundant expression and the highest fold-change, respectively. A total of 648 potential target genes of the SDE microRNAs were identified through an integrated analysis of microRNAs and the DE genes obtained in previous RNA-sequencing, including FADS1, FADS2, ELOVL6 and ACSL5, which are critical lipid metabolism-related regulators. Bioinformatic analyses revealed that target genes were mainly enriched in lipid-related metabolism processes. This work provides the first study of the expression patterns of hepatic microRNAs between 20- and 30-week old hens. The findings may serve as a fundamental resource for understanding the detailed functions of microRNAs in the molecular regulatory systems of lipid metabolism.
It is well documented that four gene families, including the glycerophosphate acyltransferases (GPATs), acylglycerophosphate acyltransferases (AGPATs), lipid phosphate phosphohydrolases (LPINs) and diacylglycerol acyltransferases (DGATs), are involved in the glycerophosphate pathway of de novo triglyceride (TG) biosynthesis in mammals. However, no systematic analysis has been conducted to characterize the gene families in poultry. In this study, the sequences of gene family members in the glycerophosphate pathway were obtained by screening the public databases. The phylogenetic tree, gene structures and conserved motifs of the corresponding proteins were evaluated. Dynamic expression changes of the genes at different developmental stages were analyzed by qRT-PCR. The regulatory characteristics of the genes were analyzed by in vivo experiments. The results showed that the GPAT , AGPAT and LPIN gene families have 2, 7 and 2 members, respectively, and they were classified into 2, 4 and 2 cluster respectively based on phylogenetic analysis. All of the genes except AGPAT1 were extensively expressed in various tissues. Estrogen induction upregulated the expression of GPAM and AGPAT2 , downregulated the expression of AGPAT3 , AGPAT9 , LPIN1 and LPIN2 , and had no effect on the expression of the other genes. These findings provide a valuable resource for further investigation of lipid metabolism in liver of chicken.
In the paper, we present schemes for implementing multi-qubit quantum gates in quantum networks based on the nitrogen-vacancy (NV) centers in diamond. In our schemes, NV centers coupled to the whispering-gallery modes of microtoroidal resonators serve as quantum registers to store quantum information. By coding the qubits of NV centers into decoherence-free subspaces, quantum information encoded in logical qubits is protected from collective dephasing, and quantum controlled-NOT and Toffoli gates between logical qubits from the same or different quantum nodes can be implemented. Compared with the previous works, our schemes are simpler and reduce the consumption of resources. Furthermore, the modularized design of multi-qubit quantum gates can be extended to other quantum platforms, which may lead to more efficient construction of quantum networks for distributed quantum computation and quantum communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.