Our results clearly demonstrate for the first time the feasibility of quantitatively detecting (13)C-bicarbonate in tumor-bearing rat brain in vivo, permitting the measurement of dichloroacetate-modulated changes in PDH flux. The simultaneous detection of lactate and bicarbonate provides a tool for a more comprehensive analysis of glioma metabolism and the assessment of metabolic agents as anti-brain cancer drugs.
The increase in p-Akt staining within these PTEN-deficient gliomas is consistent with what would be predicted from unchecked PI 3-K signaling. Furthermore, the immunohistochemically detected colocalization of p-Akt and MMP-2 and MMP-9 supports the authors' in vitro studies and the proposed linkage between PI 3-K signaling and MMP activity in gliomas.
BackgroundTumor irradiation blocks local angiogenesis, forcing any recurrent tumor to form new vessels from circulating cells. We have previously demonstrated that the post-irradiation recurrence of human glioblastomas in the brains of nude mice can be delayed or prevented by inhibiting circulating blood vessel–forming cells by blocking the interaction of CXCR4 with its ligand stromal cell-derived factor (SDF)–1 (CXCL12). In the present study we test this strategy by directly neutralizing SDF-1 in a clinically relevant model using autochthonous brain tumors in immune competent hosts.MethodsWe used NOX-A12, an l-enantiomeric RNA oligonucleotide that binds and inhibits SDF-1 with high affinity. We tested the effect of this inhibitor on the response to irradiation of brain tumors in rat induced by n-ethyl-N-nitrosourea.ResultsRats treated in utero with N-ethyl-N-nitrosourea began to die of brain tumors from approximately 120 days of age. We delivered a single dose of whole brain irradiation (20 Gy) on day 115 of age, began treatment with NOX-A12 immediately following irradiation, and continued with either 5 or 20 mg/kg for 4 or 8 weeks, doses and times equivalent to well-tolerated human exposures. We found a marked prolongation of rat life span that was dependent on both drug dose and duration of treatment. In addition we treated tumors only when they were visible by MRI and demonstrated complete regression of the tumors that was not achieved by irradiation alone or with the addition of temozolomide.ConclusionsInhibition of SDF-1 following tumor irradiation is a powerful way of improving tumor response of glioblastoma multiforme.
Hyperpolarized [1-13C]pyruvate MRS provides a unique imaging opportunity to study reaction kinetics and enzyme activities of in vivo metabolism both because of its favorable imaging characteristics as well as its critical position in the cellular metabolic pathway where it can either be reduced to lactate (reflecting glycolysis) or converted to acetyl-CoA and bicarbonate (reflecting oxidative phosphorylation).
Cancer tissue metabolism is altered in such a way as to result in a relative preponderance of glycolysis as compared to oxidative phosphorylation (i.e., Warburg effect). While there is a strong theoretical basis for presuming that readjusting the metabolic balance towards normal could alter tumor growth, a robust noninvasive in vivo tool with which to measure the balance between these two metabolic processes has yet to be developed.
Until recently, hyperpolarized 13C-pyruvate imaging studies have focused solely on [1-13C]lactate production because of its strong signal. However, without a concomitant measure of pyruvate entry into the mitochondria, the lactate signal provides no information on the balance between the glycolytic and oxidative metabolic pathways. Consistent measurement of 13C-bicarbonate in cancer tissue, which does provide such information, has proven difficult, however.
In this study, we report reliable measurement of 13C-bicarbonate production both in healthy brain and a highly glycolytic experimental glioblastoma model using an optimized 13C MRS imaging protocol. With the capacity to obtain signal in all tumors, we also confirm for the first time that the ratio of 13C-lactate-to-bicarbonate provides a more robust metric than does 13C-lactate for assessing the metabolic effects of an anti-angiogenic therapy. Our data suggest a potential application of this ratio as an early biomarker to assess therapeutic effectiveness. Furthermore, although further study is needed, the results suggest that anti-angiogenic treatment results in a rapid normalization in the relative tissue utilization of glycolytic and oxidative phosphorylation by tumor tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.