Recruitment of dendritic cells (DCs) to lymph nodes (LNs) is pivotal to the establishment of immune response. Whereas DCs have been proven to undergo afferent lymphatic pathway to enter LNs from peripheral tissues, a question remains if DCs also migrate into LNs directly from the circulation. Here we demonstrate that plasmacytoid DC (pDC) precursors can transmigrate across high endothelial venules (HEVs) of inflamed LNs in mice. Bacterial infection induces a significant number of pDC and myeloid DC (mDC) precursors into the circulation. Both subsets express a common set of chemokine receptors except CXCR3, display parallel mobilization into the blood, but show distinct trafficking pathway to the LNs. In a short-term homing assay, whereas mDC precursors migrate to peripheral tissues and subsequently to draining LNs, pDC precursors directly enter the LNs in a CXCL9 and E-selectin dependent manner. Tumor necrosis factor-alpha controls not only DC precursor mobilization into the blood but also chemokine up-regulation on LN HEVs. A similar trafficking pathway is observed also in viral infection, and CXCR3(-/-) mice-derived pDC precursors show defective trans-HEV migration. This study clarifies the inflammation-dependent, chemokine-driven distinct property of DC precursor trafficking.
SummaryInitiation of an adaptive immune response against pathogenic organisms, such as bacteria and fungi, may involve phagocytic activity of dendritic cells (DC) or their immature precursors as a prelude to antigen processing and presentation. After intravenous injection of rats with particulate matter, particle-hden cells were detected in the peripheral hepatic lymph. Since it has been known there is a constant efflux of DC from nonlymphoid organs into the draining peripheral lymph, we examined whether these particle-laden cells belonged to the DC or macrophage lineage. The majority ofparticle-hden cells in lymph showed immature monocyte-like cytology, and the amount of ingested particles was small relative to typical macrophages. We identified these particle-laden cells as DC based on a number of established criteria: (a) they had a phenotype characteristic of rat DC, that is, major histocompatibility complex class I hish+ and IlhiO +, intercellular adhesion molecule 1 + and "80~ positive with the rat DC-specific mAb OX62; (b) they showed strong s~ulating capacity in primary allogeneic mixed leukocyte reaction; (c) in vitro, they had little phagocytic activity; and (d) the kinetics of translocation was similar to that of lymph DC in that they migrated to the thymus-dependent area of the regional nodes. Furthermore, bromodeoxyuridine feeding studies revealed that most of the particleladen DC were recently produced by the terminal division of precursor cells, at least 45% of them being <5.5 d old. The partide-hden DC, defined as OX62 + htex-hden cells, were first found in the sinusoidal area of the liver, in the liver peffusate, and in spleen cell suspensions, suggesting that the site of particle capture was mainly in the blood marginating pool. It is conduded that the particle-laden cells in the hepatic lymph are recently produced immature DC that manifest a temporary phagocytic activity for intravascular par'tides during or after the terminal division and that the phagocytic activity is downregulated at a migratory stage when they translocate from the sinusoidal area to the hepatic lymph.
Acute graft-versus-host disease (a-GVHD) is initiated primarily by immunologically competent cytotoxic T cells (CTLs) that express anti-host specificities. However, the host lymphoid compartment in which these precursor CTLs are initially stimulated remains unclear. Here we show that gut Peyer's patches (PPs) are required to activate anti-host CTL responses in a well characterized murine acute graft-versus-host reaction (a-GVHR) model, involving transfer of parent lymphocytes into F1 hybrid recipients. The a-GVHR was prevented when recruitment of donor T cells into PP was interrupted either by disrupting the gene encoding chemokine receptor CCR5 or by blocking integrin alpha(4)beta(7)-MAdCAM-1 (mucosal vascular addressin) interactions. Mice deficient for PPs failed to develop a-GVHD in two models of disease induction. Thus, blockade of CTL generation in PPs might offer new strategies for circumventing a-GVHD.
Angiogenesis and vascular remodeling are features of many chronic inflammatory diseases. When diseases evolve slowly, the accompanying changes in the microvasculature would seem to be similarly gradual. Here we report that the rate of endothelial cell proliferation and the size of blood vessels increases rapidly after the onset of an infection that leads to chronic inflammatory airway disease. In C3H mice inoculated with Mycoplasma pulmonis, the tracheal microvasculature, made visible by perfusion of Lycopersicon esculentum lectin, rapidly enlarged from 4 to 7 days after infection and then plateaued. Diameters of arterioles, capillaries, and venules increased on average 148, 214, and 74%, respectively. Endothelial cell proliferation, measured by bromodeoxyuridine (BrdU) labeling, peaked at 5 days (18 times the pathogen-free value), declined sharply until day 9, but remained at ϳ3 times the pathogen-free value for at least 28 days. Remodeled capillaries and venules were sites of focal plasma leakage and extensive leukocyte adherence. Most systemic manifestations of the infection occurred well after the peak of endothelial proliferation, and the humoral immune response to M. pulmonis was among the latest, increasing after 14 days. These data show that endothelial cell proliferation and microvascular remodeling occur at an early stage of chronic airway disease and suggest that the vascular changes precede widespread tissue remodeling. Angiogenesis and vascular remodeling are important elements of the pathophysiology of cancer and chronic inflammatory diseases and may be essential for the persistence of these conditions. 1 The vasculature provides metabolic support for the diseased tissues and serves as the gatekeeper for incoming inflammatory cells and outgoing tumor cells that form metastases. The recognition that newly formed and remodeled vessels are different from those normally present led to the identification of probes to target diseased vessels selectively 2,3 and to the use of angiogenesis inhibitors in the treatment of cancer and chronic inflammation. 1,4 The properties and functional implications of angiogenic blood vessels have been examined in many animal models of cancer, 5-8 but less is known about the vascular changes in chronic inflammation. One might expect the microvasculature to change gradually as protracted inflammatory diseases evolve, or it could change rapidly at the beginning and drive other aspects of the disease. Yet the time course of changes in the vasculature in chronic inflammation has not been addressed systematically, in part because of limited suitable animal models.One animal model that has been useful for studying angiogenesis and vascular remodeling in chronic inflammation is the respiratory tract infection caused by Mycoplasma pulmonis in mice and rats. This infection causes severe, lifelong changes in the microvasculature of the airway mucosa, 9 -11 along with extensive tissue remodeling, leukocyte influx, epithelial and gland hyperplasia, and fibrosis in the airways and, in ...
Ligation of the chemokine receptor CCR2 on monocytes and macrophages with its ligand CCL2 results in activation of the cascade consisting of phosphatidylinositol-3-OH kinase (PI(3)K), the small G protein Rac and lamellipodium protrusion. We show here that a unique clathrin heavy-chain repeat homology protein, FROUNT, directly bound activated CCR2 and formed clusters at the cell front during chemotaxis. Overexpression of FROUNT amplified the chemokine-elicited PI(3)K-Rac-lamellipodium protrusion cascade and subsequent chemotaxis. Blocking FROUNT function by using a truncated mutant or antisense strategy substantially diminished signaling via CCR2. In a mouse peritonitis model, suppression of endogenous FROUNT markedly prevented macrophage infiltration. Thus, FROUNT links activated CCR2 to the PI(3)K-Rac-lamellipodium protrusion cascade and could be a therapeutic target in chronic inflammatory immune diseases associated with macrophage infiltration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.