Stacked-layer heterostructure films of 2D thiophene nanosheets and electrochemically exfoliated graphene are constructed for ultrahigh-rate all-solid-state flexible pseudocapacitors and micro-supercapacitors with superior volumetric capacitance due to the synergetic effect of the ultrathin pseudocapacitive thiophene nanosheets and the capacitive electrochemically exfoliated graphene.
Entering a new phase: Mesogenic stoppers (purple) at the ends of the rod section of a switchable donor–acceptor [2]rotaxane induce the formation of a smectic A liquid‐crystalline (LC) phase over a wide temperature range. The bistable [2]rotaxane which contains a tetracationic cyclophane (blue), a tetrathiafulvalene unit (green), and a 1,5‐dioxynaphthalene unit (red) self‐assembles into a LC phase with a layer spacing of about 8 nm (see picture).
Two-station [2]rotaxanes in the shape of a degenerate naphthalene (NP) shuttle and a nondegenerate monopyrrolotetrathiafulvalene (MPTTF)/NP redox-controllable switch have been synthesized and characterized in solution. Their dumbbell-shaped components are composed of polyether chains interrupted along their lengths by (i) two pi-electron-rich stations-two NP moieties or a MPTTF unit and a NP moiety-with (ii) a rigid arylethynyl or butadiynyl spacer situated between the two stations and terminated by (iii) flexibly tethered hydrophobic stoppers at each end of the dumbbells. This modification was investigated as a means to simplify both molecular structure and switching function previously observed in related bistable [2]rotaxanes with flexible spacers between their stations and incorporating a cyclobis(paraquat-p-phenylene) (CBPQT4+) ring. The nondegenerate MPTTF-NP switch was isolated as near isomer-free bistable [2]rotaxane. Utilization of MPTTF removes the cis/trans isomerization that characterizes the tetrathiafulvalene (TTF) parent core structure. Furthermore, only one translational isomer is observed (> 95 < 5), surprisingly across a wide temperature range (198-323 K), meaning that the CBPQT4+ ring component resides, to all intents and purposes, predominantly on the MPTTF unit in the ground state. As a consequence of these two effects, the assignment of NMR and UV-vis data is more simplified as compared to previous donor-acceptor bistable [2]rotaxanes. This development has not only allowed for much better control over the position of the ring component in the ground state but also for control over the location of the CBPQT4+ ring during solution-state switching experiments, triggered either chemically (1H NMR) or electrochemically (cyclic voltammetry). In this instance, the use of the rigid spacer defines an unambiguous distance of 1.5 nm over which the ring moves between the MPTTF and NP units. The degenerate NP/NP [2]rotaxane was used to investigate the shuttling barrier by dynamic 1H NMR spectroscopy for the movement of the CBPQT4+ ring across the new rigid spacer. It is evident from these measurements that the rigid spacer poses a much lower barrier to the 1.0 nm movement of the CBPQT4+ ring from one station to another as compared with previous systems-a finding that is thought to be a result of the combination of fewer favorable interactions between the spacer and the CBPQT4+ ring and a relatively unimpeded path between the two NP stations. This example augers well for exploiting rigidity during the development of well-defined bistable [2]rotaxanes, which are unencumbered by the excesses of structural conformations that have characterized the first generations of molecular switches based on the donor-acceptor recognition motif.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.