In this study, we consider a summarization method using the document level similarity based on embeddings, or distributed representations of words, where we assume that an embedding of each word can represent its "meaning." We formalize our task as the problem of maximizing a submodular function defined by the negative summation of the nearest neighbors' distances on embedding distributions, each of which represents a set of word embeddings in a document. We proved the submodularity of our objective function and that our problem is asymptotically related to the KL-divergence between the probability density functions that correspond to a document and its summary in a continuous space. An experiment using a real dataset demonstrated that our method performed better than the existing method based on sentence-level similarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.