Preinvasive bronchial lesions defined as dysplasia and carcinoma in situ (CIS) have been considered as precursors of squamous cell carcinoma of the lung. The risk and rate of progression of preinvasive lesions to invasive squamous cell carcinoma as well as the mechanism of progression or regression are incompletely understood. While the evidence for the multistage, stepwise progression model is weak with relatively few documented lesions that progress through various grades of dysplasia to CIS and then to invasive carcinoma, the concept of field carcinogenesis is strongly supported. The presence of high-grade dysplasia or CIS is a risk marker for lung cancer both in the central airways and peripheral lung. Genetic alterations such as loss of heterozygosity in chromosome 3p or chromosomal aneusomy as well as host factors such as the inflammatory load and levels of anti-inflammatory proteins in the lung influence the progression or regression of preinvasive lesions. CIS is different than severe dysplasia at the molecular level and has different clinical outcome. Molecular analysis of dysplastic lesions that progress to CIS or invasive cancer and rare lesions that progress rapidly from hyperplasia or metaplasia to CIS or invasive cancer will shed light on the key molecular determinants driving development to an invasive phenotype versus those associated with tobacco smoke damage.
The present guidelines of PDT for CELC were established based on the data obtained from studies in the 1980's. We postulate that comprehensive diagnosis and the new generation of photosensitizers may increase the CR rate and expand the indications of PDT for larger tumors.
Abstract. NPe6 is a novel second-generation photosensitizer used for photodynamic therapy (PDT). PDT using NPe6 and diode laser (664 nm) induces cell death, inflammatory reactions, immunological responses and damage to the microvasculature. In this study, we evaluated the influence of the immunological responses and of enhanced angiogenesis on the anti-tumor effect of NPe6-PDT using cytokine-overexpressing Lewis lung carcinoma (LLC), LLC-IL-2 cells both in vitro and in vivo. We showed by DNA microarray analysis in vitro that IL-2 and GADD-45α (growth arrest and DNA damage 45 alpha) mRNA expressions were induced by 3 h after NPe6-PDT applied at a dose killing 90% of the cells (LD 90 ). IL-2-overexpressing cells (LLC/IL-2 cells) were resistant to the loss of clonogenicity as compared to the parental LLC cells in vitro. Furthermore, in female C57BL/6 mice, NPe6-PDT produced a cure rate of 66.7% in LLC tumors, whereas the cure rate was only 16.6% in LLC/IL-2 tumors, and overexpression of IL-2 caused failure of NPe6-PDT, with tumor recurrence, in vivo. These results suggest that IL-2 expression may play an unfavorable role in attenuation of the antitumor effect of NPe6-PDT. It has been reported that the expression of vascular endothelial growth factor (VEGF), in particular, may cause tumor recurrence after PDT and exert unfavorable effect in relation to attenuate the anti-tumor activity of PDT. Results of immunohistochemical analysis of LLC/IL-2 tumors have revealed that the expressions of GADD-45α and VEGF are induced in these tumors after PDT, and in particular, 12 h after PDT, the expression levels were much higher as compared with those in the LLC tumors. The results of our studies using in vitro and in vivo models suggest that the cell death caused by PDT was inhibited by induction of GADD-45α expression and that tumor recurrence was promoted by the enhancement of VEGF expression mediated by IL-2 upregulation. Therefore, it is speculated that the use of an IL-2 inhibitor may improve the efficacy of NPe6-PDT.
Mucoepidermoid carcinomas in the bronchial tree are extremely rare tumors. Such tumors are classified into low-grade and high-grade on the basis of histological criteria. Fluorine-18-fluorodeoxyglucose positron emission tomography (F-18 FDG PET) is a useful technique for the evaluation of pulmonary lesions; however, to our knowledge, F-18 FDG PET findings in mucoepidermoid carcinoma of the bronchus have been described in only a few cases. Identifiable focal F-18 FDG uptake has been reported in high-grade mucoepidermoid carcinoma, but it is unclear whether F-18 FDG accumulates in low-grade mucoepidermoid carcinoma. Here, we present the case of a 37-year-old woman, with pathologically proven low-grade mucoepidermoid carcinoma, who underwent high-resolution computed tomography (CT) and F-18 FDG PET/CT before treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.