In this paper, a developed theory of a novel approach of the wave concept iterative process (WCIP) method is presented. This method is well used to demonstrate many attractive properties of metamaterials and to analyze metamaterial-based negative refractive index lenses by easy and speedy computation of the electromagnetic field distribution. These metamaterial-based circuits are established by using periodicL–CandC–Lnetworks. The results of simulation using the proposed method are justified theoretically.
Abstract-In this work, we show that it is possible to produce a planar electromagnetic jet using a flat structure consisting of elementary cells based on lumped elements and fed with a source line. A combination of elementary cells may represent a gradient index, locating the electromagnetic energy in a small area, consisting of a few cells and having a size of about 0.75λ. The theoretical framework of the study is based on the Wave Concept Iterative Process method (WCIP) formulated in both spectral and spatial domains. An analogy with an optical model based on optical paths equality enables predicting the location of formation of this spot. The use of such a system can provide solutions for the development of new kinds of applications such as engraving sub-wavelength, data storage, improved scalpel optics for ultra-precise laser surgery, and detection of cancer.
A new study of right-handed and composite right/left-handed metamaterial transmission lines (TL) using their equivalent circuits and a new approach of the wave concept iterative process method is presented. This approach has the advantage of simulating all the periodic structures by only simulating one basic cell thanks to the surrounding periodic walls. A suitable choice of the cell length is necessary to work with the current as well as voltage and to approach the real behavior of the TL. The simulation results of these circuits, such as the calculation of current, voltage and the parameters S, helped to validate all the theoretical study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.