This
manuscript reports a visible-light-mediated organosulfide
catalysis that enables the decarboxylative coupling between simple
aliphatic alcohol and tertiary or secondary alkyl carboxylic acid-derived
redox active esters to produce a C(sp3)–O–C(sp3) fragment. Results of the coupling using other heteroatom
nucleophiles such as water, amides, and thiols are also described.
Over the past century, significant progress in semipinacol rearrangement involving 1,2-migration of α-hydroxy carbocations has been made in the areas of catalysis and total synthesis of natural products. To access the α-hydroxy carbocation intermediate, conventional acid-mediated or electrochemical approaches have been employed. However, the photochemical semipinacol rearrangement has been underdeveloped. Herein, we report the organophotoredox-catalyzed semipinacol rearrangement via radical-polar crossover (RPC). A phenothiazine-based organophotoredox catalyst facilitates the generation of an α-hydroxy non-benzylic alkyl radical followed by oxidation to the corresponding carbocation, which can be exploited to undergo the semipinacol rearrangement. As a result, the photochemical approach enables decarboxylative semipinacol rearrangement of β-hydroxycarboxylic acid derivatives and alkylative semipinacol type rearrangement of allyl alcohols with carbon electrophiles, producing α-quaternary or α-tertiary carbonyls bearing sp3-rich scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.