For most organisms, sensitive recognition of even slight changes in environmental temperature is essential for adjusting their behavioral strategies to ensure homeostasis and survival. However, much remains to be understood about the molecular and cellular processes that regulate thermosensation and the corresponding behavioral responses. Planarians display clear thermotaxis, although they have a relatively simple brain. Here, we devised a quantitative thermotaxis assay and unraveled a neural pathway involved in planarian thermotaxis by combinatory behavioral assays and RNAi analysis. We found that thermosensory neurons that expressed a planarian Dugesia japonica homolog of the Transient Receptor Potential Melastatin family a (DjTRPMa) gene were required for the thermotaxis. Interestingly, although these thermosensory neurons are distributed throughout their body, planarians with a dysfunctional brain due to regeneration-dependent conditional gene knockdown (Readyknock) of the synaptotagmin gene completely lost their thermotactic behavior. These results suggest that brain function is required as a central processor for the thermosensory response. Therefore, we investigated the type(s) of brain neurons involved in processing the thermal signals by gene knockdown of limiting enzymes for neurotransmitter biosynthesis in the brain. We found that serotonergic neurons with dendrites that were elongated toward DjTRPMaexpressing thermosensory neurons might be required for the processing of signals from thermosensory neurons that results in thermotaxis. These results suggest that serotonergic neurons in the brain may interact with thermosensory neurons activated by TRPM ion channels to produce thermotaxis in planarians.
IntroductionPlanarians belong to an evolutionarily early group of organisms that possess a central nervous system including a well-organized brain with a simple architecture but many types of neurons. Planarians display a number of behaviors, such as phototaxis and thermotaxis, in response to external stimuli, and it has been shown that various molecules and neural pathways in the brain are involved in controlling these behaviors. However, due to the lack of combinatorial assay methods, it remains obscure whether planarians possess higher brain functions, including integration in the brain, in which multiple signals coming from outside are coordinated and used in determining behavioral strategies.ResultsIn the present study, we designed chemotaxis and thigmotaxis/kinesis tracking assays to measure several planarian behaviors in addition to those measured by phototaxis and thermotaxis assays previously established by our group, and used these tests to analyze planarian chemotactic and thigmotactic/kinetic behaviors. We found that headless planarian body fragments and planarians that had specifically lost neural activity following regeneration-dependent conditional gene knockdown (Readyknock) of synaptotagmin in the brain lost both chemotactic and thigmotactic behaviors, suggesting that neural activity in the brain is required for the planarian's chemotactic and thigmotactic behaviors. Furthermore, we compared the strength of phototaxis, chemotaxis, thigmotaxis/kinesis, and thermotaxis by presenting simultaneous binary stimuli to planarians. We found that planarians showed a clear order of predominance of these behaviors. For example, when planarians were simultaneously exposed to 400 lux of light and a chemoattractant, they showed chemoattractive behavior irrespective of the direction of the light source, although exposure to light of this intensity alone induces evasive behavior away from the light source. In contrast, when the light intensity was increased to 800 or 1600 lux and the same dose of chemoattractant was presented, planarian behaviors were gradually shifted to negative phototaxis rather than chemoattraction. These results suggest that planarians may be capable of selecting behavioral strategies via the integration of discrete brain functions when exposed to multiple stimuli.ConclusionsThe planarian brain processes external signals received through the respective sensory neurons, thereby resulting in the production of appropriate behaviors. In addition, planarians can adjust behavioral features in response to stimulus conditions by integrating multiple external signals in the brain.Electronic supplementary materialThe online version of this article (doi:10.1186/s40851-014-0010-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.