SUMMARY
Sinapis alba and Sinapis arvensis are mustard crops within the Brassiceae tribe of the Brassicaceae family, and represent an important genetic resource for crop improvement. We performed the de novo assembly of Brassica nigra, S. alba, and S. arvensis, and conducted comparative genomics to investigate the pattern of genomic evolution since an ancient whole‐genome triplication event. Both Sinapis species retained evidence of the Brassiceae whole‐genome triplication approximately 20.5 million years ago (Mya), with subgenome dominance observed in gene density, gene expression, and selective constraint. While S. alba diverged from the ancestor of Brassica and Raphanus at approximately 12.5 Mya, the divergence time of S. arvensis and B. nigra was approximately 6.5 Mya. S. arvensis and B. nigra had greater collinearity compared with their relationship to either Brassica rapa or Brassica oleracea. Two chromosomes of S. alba (Sal03 and Sal08) were completely collinear with two ancestral chromosomes proposed in the Ancestral Crucifer Karyotype (ACK) genomic block model, the first time this has been observed in the Brassiceae. These results are consistent with S. alba representing a relatively ancient lineage of the species evolved from the common ancestor of tribe Brassiceae, and suggest that the phylogeny of the Brassica and Sinapis genera requires some revision. Our study provides new insights into the genome evolution and phylogenetic relationships of Brassiceae and provides genomic information for genetic improvement of these plants.
Purple/red appearance is one of the common phenotypic variations in leaves, stems, and siliques of oilseed rape (Brassica napusL.) but very rare in flowers. In this study, the causal genes for the purple/red traits in stems and flowers in two accessions of oilseed rape (DH_PR and DH_GC001, respectively) derived from the wide hybridization were fine mapped and candidate genes were determined by methods combined with bulked segregant analysis (BSA) and RNA-seq analysis. Both purple stem trait and red flowers trait were mapped to the locus as the AtPAP2 homologous genes (BnaPAP2.C6a and BnaPAP2.A7b, respectively) belonging to the R2R3-MYB family. Sequencing of the BnaPAP2.C6a gene in purple stem accession revealed several Indels and SNPs in its promoter region, intron 1 as well as exons. However, only a 211bp insertion was identified in promoter region of BnaPAP2.A7b of DH_GC001. Our results not only contribute to a better understanding of anthocyanin inheritance in B. napus, but also provide a useful toolbox for future breeding of cultivars with purple/red traits through combination of different functional alleles and homologs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.