Progress control is a key technology for successfully carrying out a project by predicting possible problems, particularly production delays, and establishing measures to avoid them (decision-making). However, shipyard progress management is still dependent on the empirical judgment of the manager, and this has led to delays in delivery, which raises ship production costs. Therefore, this paper proposes a methodology for shipyard ship block assembly plants that enables objective process progress measurement based on real-time work performance data, rather than the empirical judgment of a site manager. In particular, an IoT-based physical progress measurement method that can automatically measure work performance without human intervention is presented for the mounting and welding activities of ship block assembly work. Both an augmented reality (AR) marker-based image analysis system and a welding machine time-series data-based machine learning model are presented for measuring the performances of the mounting and welding activities. In addition, the physical progress measurement method proposed in this study was applied to the ship block assembly plant of shipyard H to verify its validity.
Ship block assembly planning is very complex due to the various activities and characteristics of ship production. Therefore, competitiveness in the shipbuilding industry depends on how well a company operates its ship block assembly plan. Many shipbuilders are implementing various studies to improve their competitiveness in ship block assembly planning, specifically regarding technology usage, such as modeling and simulation (M&S) and Cyber-Physical Systems (CPS). Although these technologies are successfully applied in some production planning systems, it is difficult to tailor ship production planning systems with flexibility due to unexpected situations. Providing a flexible plan for these production planning systems requires a way to describe and review the organic relationships of ship production processes. In this research, a process-based modeling (PBM) method proposes a novel approach to describing the production process of ship block assembly planning by redefining production information based on changing instructions. The proposed method consists of four modeling steps. The first creates a unit model, which includes the products, processes, and resource information for the block. The second designs an integrated network process for linking unit models according to the bill of materials (BOM). The third creates a process-based model that describes the production processes by combining unit models. The fourth generates a simulation model by applying a Petri-net to the process-based model, which analyzes the productivity of the ship’s block assembly processes. PBM identifies the assembly process’ interrelationship and shows that productivity can be reviewed to uncover ship production problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.