Precision measurements are important across all fields of science. In particular, optical phase measurements can be used to measure distance, position, displacement, acceleration, and optical path length. Quantum entanglement enables higher precision than would otherwise be possible. We demonstrated an optical phase measurement with an entangled four-photon interference visibility greater than the threshold to beat the standard quantum limit-the limit attainable without entanglement. These results open the way for new high-precision measurement applications.
Quantum metrology promises greater sensitivity for optical phase measurements than could ever be achieved classically. Here we present a theory of the phase sensitivity for the general case where the detection probability is given by an N photon interference fringe. We find that the phase sensitivity has a complex dependence on both the intrinsic efficiency of detection η and the interference fringe visibility V . Most importantly, the phase that gives maximum phase sensitivity is in general not the same as the phase at which the slope of the interference fringe is a maximum, as has previously been assumed. We determine the parameter range where quantum enhanced sensitivity can be achieved. In order to illustrate these theoretical results, we perform a four photon experiment with η = 3/4 and V = 82 ± 6% (an extension of our previous work [Science 316, 726 (2007)]) and find a phase sensitivity 1.3 times greater than the standard quantum limit at a phase different to that which gives maximum slope of the interference fringe.
The ability to filter quantum states is a key capability in quantum information science and technology, in which one-qubit filters, or polarizers, have found wide application. Filtering on the basis of entanglement requires extension to multi-qubit filters with qubit-qubit interactions. We demonstrated an optical entanglement filter that passes a pair of photons if they have the desired correlations of their polarization. Such devices have many important applications to quantum technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.