Neural-tube closure is a critical step of embryogenesis, and its failure causes serious birth defects. Coordination of two morphogenetic processes--convergent extension and neural-plate apical constriction--ensures the complete closure of the neural tube. We now provide evidence that planar cell polarity (PCP) signaling directly links these two processes. In the bending neural plates, we find that a PCP-regulating cadherin, Celsr1, is concentrated in adherens junctions (AJs) oriented toward the mediolateral axes of the plates. At these AJs, Celsr1 cooperates with Dishevelled, DAAM1, and the PDZ-RhoGEF to upregulate Rho kinase, causing their actomyosin-dependent contraction in a planar-polarized manner. This planar-polarized contraction promotes simultaneous apical constriction and midline convergence of neuroepithelial cells. Together our findings demonstrate that PCP signals confer anisotropic contractility on the AJs, producing cellular forces that promote the polarized bending of the neural plate.
Remodeling of epithelial sheets plays important roles in animal morphogenesis. Shroom3 is known to regulate the apical constriction of epithelial cells. Here, we show that Shroom3 binds ROCKs and recruits them to the epithelial apical junctions. We identified the Shroom3-binding site (RII-C1) on ROCKs, and found that RII-C1 could antagonize the Shroom3-ROCK interaction, interfering with the action of Shroom3 on cell morphology. In the invaginating neural plate/tube, Shroom3 colocalized with ROCKs at the apical junctions; Shroom3 depletion or RII-C1 expression in the tube removed these apically localized ROCKs, and concomitantly blocked neural tube closure. Closing neural plate exhibited peculiar cell assemblies, including rosette formation, as well as a planar-polarized distribution of phosphorylated myosin regulatory light chain, but these were abolished by ROCK inhibition or RII-C1 expression. These results demonstrate that the Shroom3-ROCK interaction is crucial for the regulation of epithelial and neuroepithelial cell arrangement and remodeling.
Microtubule assembly is initiated by the gamma-tubulin ring complex (gamma-TuRC). In yeast, the microtubule is nucleated from gamma-TuRC anchored to the amino-terminus of the spindle pole body component Spc110p, which interacts with calmodulin (Cmd1p) at the carboxy-terminus. However, mammalian protein that anchors gamma-TuRC remains to be elucidated. A giant coiled-coil protein, CG-NAP (centrosome and Golgi localized PKN-associated protein), was localized to the centrosome via the carboxyl-terminal region. This region was found to interact with calmodulin by yeast two-hybrid screening, and it shares high homology with the carboxyl-terminal region of another centrosomal coiled-coil protein, kendrin. The amino-terminal region of either CG-NAP or kendrin indirectly associated with gamma-tubulin through binding with gamma-tubulin complex protein 2 (GCP2) and/or GCP3. Furthermore, endogenous CG-NAP and kendrin were coimmunoprecipitated with each other and with endogenous GCP2 and gamma-tubulin, suggesting that CG-NAP and kendrin form complexes and interact with gamma-TuRC in vivo. These proteins were localized to the center of microtubule asters nucleated from isolated centrosomes. Pretreatment of the centrosomes by antibody to CG-NAP or kendrin moderately inhibited the microtubule nucleation; moreover, the combination of these antibodies resulted in stronger inhibition. These results imply that CG-NAP and kendrin provide sites for microtubule nucleation in the mammalian centrosome by anchoring gamma-TuRC.
Nishimura et al. show that DAAM1, a formin family actin polymerization regulator, stabilizes epithelial cell junctions by counteracting the WAVE complex, another actin regulator. Loss of DAAM1 promotes the motility of junctional membranes and thereby enhances their invasion of neighboring environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.