Abstract-Yasuura's mode-matching method is employed in the investigation of plasmon resonance absorption on a metal grating with a gold over-coating and the results are compared with experimental data. Enhancement of TM-TE mode conversion accompanying the plasmon resonance absorption is examined. When a TM wave is incident on a metal grating, enhanced TM-TE mode conversion occurs at angles of incidence at which the surface plasmons are excited. The strength of the mode conversion depends strongly on the azimuth angle of the mounting. This is verified by experiment and an application for refractive index measurement is suggested.
Abstract-An effective computational method based on a conventional modal expansion approach is presented for handling a multilayered dielectric grating whose profiles are multilayered and sinusoidally modulated. This structure fabricated by dielectric material is one of the useful photonic crystals. The method is based on Yasuura's modal expansion, which is known as a least-squares boundary residual method or a modified Rayleigh method. In the extended method, each layer is divided into shallow horizontal layers. The Floquet modal functions and approximate solutions are defined in each shallow layer, and the latter are matched with boundary conditions in the least-squares sense. A huge-sized least-squares problem that appears in finding the modal coefficients is solved by the QR decomposition accompanied by sequential accumulation. This procedure makes it possible to treat the case where the groove depths are the same as or a little more than the grating period. As numerical example, we calculate a diffractive characteristic by a multilayered deep dielectric grating and confirm that a common band gap occurs for both polarizations.
The optical trapping forces acting on a metallic Rayleigh particle are calculated for the case where a double-ring-shaped radially polarized beam is applied. The influence of the off-focus distance and the off-axis distance of a trapping particle on the trapping force is investigated. Compared with the use of the conventional single-ring-shaped radially polarized beam, the longer axial trap distance and the larger radial trap stiffness are predicted using a double-ring-shaped radially polarized beam in an optical trap. These features are useful for improving the trapping ability of an optical trap system where a longer axial trap distance is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.