Vision-based object detection using camera sensors is an essential piece of perception for autonomous vehicles. Various combinations of features and models can be applied to increase the quality and the speed of object detection. A wellknown approach uses histograms of oriented gradients (HOG) with deformable models to detect a car in an image [15]. A major challenge of this approach can be found in computational cost introducing a real-time constraint relevant to the real world. In this paper, we present an implementation technique using graphics processing units (GPUs) to accelerate computations of scoring similarity of the input image and the pre-defined models. Our implementation considers the entire program structure as well as the specific algorithm for practical use. We apply the presented technique to the real-world vehicle detection program and demonstrate that our implementation using commodity GPUs can achieve speedups of 3x to 5x in frame-rate over sequential and multithreaded implementations using traditional CPUs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.