Photovoltaic (PV) generation is potentially uncertain. Probabilistic PV generation forecasting methods have been proposed with prediction intervals (PIs) to evaluate the uncertainty quantitively. However, few studies have applied PIs to geographically distributed PVs in a specific area. In this study, a two-step probabilistic forecast scheme is proposed for geographically distributed PV generation forecasting. Each step of the proposed scheme adopts ensemble forecasting based on three different machine-learning methods. When individual PV generation is forecasted, the proposed scheme utilizes surrounding PVs’ past data to train the ensemble forecasting model. In this case study, the proposed scheme was compared with conventional non-multistep forecasting. The proposed scheme improved the reliability of the PIs and deterministic PV forecasting results through 30 days of continuous operation with real data in Japan.
Photovoltaic (PV) generation is potentially uncertain. Probabilistic PV generation forecasting methods have been proposed with prediction intervals (PIs). However, several studies have dealt with geographically distributed PVs in a certain area. In this study, a two-step probabilistic forecast scheme is proposed for geographically distributed PV generation forecasting. Each step of the proposed scheme adopts ensemble forecasting based on three different machine-learning methods. In this case study, the proposed scheme was compared with conventional non-multistep forecasting. The proposed scheme improved the reliability of the PIs and deterministic PV forecasting results through 30 days of continuous operation with real data in Japan.
The power-generation capacity of grid-connected photovoltaic (PV) power systems is increasing. As output power forecasting is required by electricity market participants and utility operators for the stable operation of power systems, several methods have been proposed using physical and statistical approaches for various time ranges. A short-term (30 min ahead) forecasting method has been previously proposed by our laboratory for geographically distributed PV systems using motion estimation. This study focuses on an important parameter for estimating the proposed motion and optimizing the parameter. This parameter is important because it is associated with the smoothness of the vector field, which is the result of motion estimation and influences the forecasting accuracy. In the periods with drastic power output changes, the evaluation was conducted on 101 PV systems located within a circle of 15-km radius in the Kanto region of Japan. The results indicate that the absolute mean error of the proposed method with the optimized parameter is 10.3%, whereas that of the persistent prediction method is 23.7%. Therefore, the proposed method is effective in forecasting for periods when PV output changes drastically in a short time.
The power-generation capacity of grid-connected photovoltaic (PV) power systems is increasing. As output power forecasting is required by electricity market participants and utility operators for the stable operation of power systems, several methods have been proposed using physical and statistical approaches for various time ranges. A short-term (30 min ahead) forecasting method had been proposed previously for multiple PV systems using motion estimation. This method forecasts the short time ahead PV power generation by estimating the motion between two geographical images of the distributed PV power systems. In this method, the parameter , which relates the smoothness of the resulting motion vector field and affects the accuracy of the forecasting, is important. This study focuses on the parameter and evaluates the effect of changing this parameter on forecasting accuracy. In the periods with drastic power output changes, the forecasting was conducted on 101 PV systems. The results indicate that the absolute mean error of the proposed method with the best parameter is 10.3%, whereas that of the persistence forecasting method is 23.7%. Therefore, the proposed method is effective in forecasting periods when PV output changes drastically within a short time interval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.