Transistors, the most important logic elements, are maintained under dynamic influence during circuit operations. Practically, circuit design protocols and frequency responsibility should stem from a perfect agreement between the static and dynamic properties. However, despite remarkable improvements in mobility for organic semiconductors, the correlation between the device performances achieved under static and dynamic circumstances is controversial. Particularly in the case of organic semiconductors, it remains unclear whether parasitic elements that relate to their unique molecular aggregates may violate the radiofrequency circuit model. Thus, we herein report the manufacture of micrometre-scale transistor arrays composed of solution-processed organic semiconductors, which achieve near very high-frequency band operations. Systematic investigations into the device geometrical factors revealed that the radiofrequency circuit model established on a solid-state continuous medium is extendable to organic single-crystal field-effect transistors. The validity of this radiofrequency circuit model allows a reliable prediction of the performances of organic radiofrequency devices.
Organic field-effect transistors (OFETs) have attracted great attention as key elements in Internet-of-Thing (IoT) devices due to their advantages of low cost and mass producibility made possible by printing technology. Such devices require organic semiconductors (OSCs) that intrinsically possess high carrier mobility and air stability. In addition, the demand for low-voltage operation and low power consumption has been increasing because the potential power sources for actual devices are implementable energy harvesters that supply low power and low voltages. Based on recently developed high-performance single-crystal p-type and n-type OSCs, this work demonstrated air-stable, high-mobility OFETs with low-voltage operation by using an insulating polymer-blend printing method. By comparing two acrylic polymers poly(methyl methacrylate) and poly(adamantyl methacrylate) (PADMA), having remarkably different thermal properties, we found that PADMA showing a high glass transition temperature >200 °C was suitable for device fabrication, enhancing the flexibility of OSC materials. Also, PADMA spontaneously produced good charge-transport interfaces with the OSC single crystals, leading to high carrier mobilities of 6.6 and 2.2 cm2 V−1 s−1 in p-channel and n-channel OFETs at ≤1.5 V, respectively. The current electron mobility was the highest among low voltage-operation OFETs reported so far. These high-mobility OFETs were integrated into a complementary inverter, for which a low static power consumption of 6.6 pW was confirmed. Therefore, this study reports an advantage of polymer-blend printing for OFETs with enhanced processability and performance suitable for IoT applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.