Membrane resistance and permselectivity for counter-ions have important roles in determining the performance of cation-exchange membranes (CEMs). In this study, PVA-based polyanions—poly(vinyl alcohol-b-sodium styrene sulfonate)—were synthesized, changing the molar percentages CCEG of the cation-exchange groups with respect to the vinyl alcohol groups. From the block copolymer, poly(vinyl alcohol) (PVA)-based CEMs, hereafter called “B-CEMs”, were prepared by crosslinking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations CGA. The ionic transport properties of the B-CEMs were compared with those previously reported for the CEMs prepared using a random copolymer—poly(vinyl alcohol-co-2-acrylamido-2-methylpropane sulfonic acid)—hereafter called ”R-CEMs”. The B-CEMs had lower water content than the R-CEMs at equal molar percentages of the cation-exchange groups. The charge density of the B-CEMs increased as CCEG increased, and reached a maximum value, which increased with increasing CGA. A maximum charge density of 1.47 mol/dm3 was obtained for a B-CEM with CCEG = 2.9 mol% and CGA = 0.10 vol.%, indicating that the B-CEM had almost two-thirds of the permselectivity of a commercial CEM (CMX: ASTOM Corp. Japan). The dynamic transport number and membrane resistance of a B-CEM with CCEG = 8.3 mol% and CGA = 0.10 vol.% were 0.99 and 1.6 Ωcm2, respectively. The B-CEM showed higher dynamic transport numbers than those of the R-CEMs with similar membrane resistances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.