Agricultural and forestry biomass direct-fired power generation represents an important technology to promote low-carbon energy transition and sustainable development. To solve the problems of boiler output fluctuation caused by unstable combustion of high moisture content biomass and insufficient recovery of ash waste heat after combustion, steel heat carriers (HC) were used to absorb high-temperature ash (HTA) waste heat, and then HC was directly mixed with high moisture biomass for dewatering and drying. The thermal efficiency of waste heat recovery decreased with the increase of ash temperature, and the highest thermal efficiency of waste heat recovery was 77.4% at a heat-carrying spheres temperature (THC) of 600 °C and a mixing mass ratio of 3. Through the optimization of waste heat recovery and mixed drying process, at a biomass ash temperature of 800°C, 1 kg of ash was able to dry 0.75 kg of high moisture content biomass, resulting in a reduction in fuel moisture by about 10%.
Due to the reduction of the thermal efficiency and output fluctuation of the boiler system caused by the high moisture in biomass, dewatering of fuels using low-cost processes is an important step in feedstock pretreatment for biomass power plants.In the present study, a steel ball was used as the spherical heat carrier (SHC). The effects of the SHC temperature on the dewatering of different biomasses were investigated by a mixturedrying device at 40% moisture content of biomass, and the drying process of peanut shells was analyzed. Results showed that the moisture content was effectively reduced, and the combustion performance of the biomass was significantly promoted. The work is likely to provide an economically feasible approach for biomass drying in further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.