The artificial frozen wall crossing the water-rich sand layer is prone to failure during thawing. To study the loading fracture characteristics and damage evolution of single-fissured sandstone after thawing, quasi-sandstones with prefabricated single fissure at different angles were prepared using the sandstone of the Luohe Formation as the original rock to conduct freeze–thaw tests with various temperature differences, and triaxial compression tests were performed on the samples. Based on the distribution theory of rock micro-element strength and static elastic modulus, a damage constitutive model of single-fissured quasi-sandstone under freezing–thawing and confining pressure was established. The results show that with the decrease in freezing temperature, the amount of flake spalling on the sample surface increases, and the frost-heaving cracks of quasi-sandstone become more numerous and longer, which makes the single-fissured quasi-sandstone tend to have a more complex tensile–shear hybrid failure than a shear failure. Moreover, with the increase in fissure angle, the absolute value of the freezing temperature required to produce frost-heaving cracks increases. An S-shaped damage evolution curve corresponds to each stage of triaxial compression of single-fissured quasi-sandstone. With the decrease in freezing temperature, the strength of rock after thawing decreases, and the brittleness characteristics strengthen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.