Healthcare accessibility has become an issue of social equity. An accurate estimation of existing healthcare accessibility is vital to plan and allocate health resources. Healthcare capacity, population demand, and geographic impedance are three essential factors to measure spatial accessibility. Additionally, geographic impedance is usually represented with a function of travel time. In this paper, the three-step floating catchment area (3SFCA) method is improved from the perspectives of the temporal dimension and population demand. Specifically, the travel time from the population location to the service site is precisely calculated by introducing real-time traffic conditions instead of utilizing empirical speed in previous studies. Additionally, with the utilization of real-time traffic, a dynamic result of healthcare accessibility is derived during different time periods. In addition, since the medical needs of the elderly are higher than that of the young, a demand weight index of demand is introduced to adjust the population demand. A case study of healthcare accessibility in Wuhan shows that the proposed method is effective to measure healthcare accessibility during different time periods. The spatial accessibility disparities of communities and crowdedness of hospitals are identified as an important reference for the balance between the supply and demand of medical resources.
Land cover classification of urban areas is critical for understanding the urban environment. High-resolution remotely sensed imagery provides abundant, detailed spatial information for urban classification. In the meantime, OpenStreetMap (OSM) data, as typical crowd-sourced geographical information, have been an emerging data source for obtaining urban information. In this context, a land cover classification method that fuses high-resolution remotely sensed imagery and OSM data is proposed. Training samples were generated by integrating the OSM data and multiple information indexes. OSM data, which contain class attributes and location information of urban objects, served as the labels of initial training samples. Multiple information indexes that reflect spectral and spatial characteristics of different classes were utilized to improve the training set. Morphological attribute profiles were used because the structural and contextual information of images was effective in distinguishing the classes with similar spectral characteristics. Moreover, a road superimposition strategy that considers road hierarchy was developed because OSM data provide road information with high completeness in the urban area. Experiments were conducted on the data captured over Wuhan city, and three state-of-the-art approaches were adopted for comparison. Results show that the proposed approach obtains satisfactory results and outperforms the other comparative approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.