BackgroundBoth microRNA (miR)-196a and miR-196b are implicated in normal cell differentiation, proliferation, and in tumorigenesis of various cancer types. Especially, miR-196a exerts a pro-oncogenic influence in colorectal cancer (CRC) cells and miR-196b expression is upregulated in CRC tissues. The aim of this study was to evaluate the associations of miR-196a and miR-196b dysregulation with clinicopathological characteristics and prognosis in patients with CRC.MethodsQuantitative real time-PCR (qRT-PCR) was performed to detect the expression levels of miR-196a and miR-196b in 126 pairs of fresh tumor samples matched with adjacent colorectal mucosa obtained from 126 patients with CRC.ResultsmiR-196a and miR-196b expression levels in CRC tissues were significantly higher than those in adjacent colorectal mucosa (both P < 0.002). Interestingly, the expression levels of miR-196a in CRC tissues were positively correlated with those of miR-196b. Then, high miR-196a expression and high miR-196b expression, alone or in combination, were all statistically linked to the presence of lymph node metastasis, the poor differentiation grade, and the advanced TNM stage of CRC. Moreover, overall and disease-free survivals of CRC patients with high miR-196a expression, high miR-196b expression and miR-196a-high/miR-196b-high expression tended to be shorter than the corresponding control groups (log-rank statistic, all P < 0.001). Furthermore, multivariate analysis indicated miR-196a and/or miR-196b expression as independent prognostic indicators for CRC patients (all P < 0.05).ConclusionsBoth miR-196a and miR-196b may be correlated with aggressive progression and unfavorable clinical outcome in CRC patients. Combined expression of miR-196a and miR-196b may be a promising biomarker in identifying a poor prognosis group of CRC.
Activation of the epithelial-to-mesenchymal transition (EMT) endows extraordinary invasive capability of cancer cells and causes of treatment failure and metastasis in gastrointestinal stromal tumor (GIST); however, the molecular mechanisms governing GIST invasion remain largely unknown. MicroRNAs (miRNAs) have been shown to play critical roles in cell motility and invasion, which promotes us to study the biological functions of miR-137 in the EMT of GIST. We have found that miR-137 was dramatically downregulated in clinical specimen of GIST. Using an in silico analysis approach, Twist1, a key regulator gene of EMT, has been identified as the target of miR-137. Quantitative RT-PCT and western blot were used to confirm that miR-137 directly targeted on Twist1 and repressed Twist1 expression in GIST-H1 human gastrointestinal stromal tumor cell line. Further, miR-137 was found to increase expression of E-cadherin and cytokeratin, but suppress expression of N-cadherin and vimentin. In vitro experiments have shown that miR-137 enhanced the epithelial cell morphology, decreased GIST cell migration, activated G1 cell cycle arrest, and induced cell apoptosis. These results suggest a novel mechanism that miR-137 regulates EMT and inhibits cell migration via Twist1 downregulation. Therefore, miR-137 may function as anti-migration and anti-metastasis in GIST and our study provides a potential approach for developing miR-137-based therapeutic strategy for GIST.
Basic transcription factor 3 (BTF3) is associated with the development of several cancers. The aim of our study was to elucidate the role of BTF3 in colorectal cancer (CRC) tissues. CRC tissues or their paired adjacent noncancerous (ANCT) tissues were obtained from 90 patients who underwent operations in our hospital from November 2011 to December 2016, and then we implemented a gene microarray assay for detecting significant changes in gene expression and confirmed expression in tissues using immunohistochemistry and real-time PCR. We transfected or injected the silencing BTF3 (BTF3-siRNA) plasmid into cells and nude mice, and measured the tumorigenicity of CRC cells with flow cytometry and studied the expression level of BTF3 downstream genes (MAD2L2, MCM3 and PLK1) in CRC cells. BTF3 expression level was not only significantly higher in CRC tissue than in ANCT tissue (2.61 ± 0.07 vs 1.90 ± 0.03, P < 0.001) but BTF3-siRNA decreased tumor formation in a nude mice model. Furthermore, based on the data of gene microarray analysis, MAD2L2, MCM3 and PLK1 were detected as the downstream target genes of BTF3 and their expressions were positive related with BTF3 expression. Also, through transfecting BTF3-siRNA into HCT116 cells, we found that BTF3-siRNA could decrease cell viability and induced cell apoptosis and blocking the cell cycle. In conclusion, BTF3 is positively related to CRC and BTF3-siRNA attenuated the tumorigenicity of colorectal cancer cells via MAD2L2, MCM3 and PLK1 activity reduction.
Background. Ferroptosis plays a vital role in hepatocellular carcinoma (HCC). CISD1 is known to regulate ferroptosis negatively. However, the correlations of CISD1 to prognosis in HCC and its potential mechanism remain unclear. Aim. To investigate the expression level and prognostic value of CISD1 in HCC. Methods. Gene expression and clinical data for 33 cancer types in TCGA were downloaded from the UCSC Xena platform. Pan-cancer analysis was performed to determine the expression profile and prognostic value of CISD1 in human cancers. GEO datasets and Human Protein Atlas (HPA) were used to verify the mRNA and protein expression levels. The influence of CISD1 on clinical prognosis in HCC was evaluated using a Kaplan-Meier plotter. The PPI network was constructed using the STRING database and Cytoscape. GO and KEGG pathways were constructed using the “clusterProfiler” R package with the FDR cutoff of 0.05. The methylation at the CISD1 promoter was detected using UALCAN and GEO datasets. The correlations between CISD1 and HCC immune infiltrates were investigated via TIMER. Results. Pan-cancer analysis of TCGA data showed that CISD1 is differentially expressed in multiple tumors. Data of gene expression microarrays reveal that the mRNA expression of CISD1 is higher in HCC than that in normal tissue. The protein level of CISD1, validated by the Human Protein Atlas (HPA) database, was upregulated consistently with mRNA levels in HCC samples. High CISD1 expression was associated with better overall survival (OS), disease-free survival (DFS), disease-specific survival (DSS), and progression-free survival (PFS) in LGG, but with poorer OS, DFS, DSS, and PFS in LIHC. Protein-protein interaction (PPI) analysis and GO/KEGG analysis showed that the PPI network and GO term of CISD1 were mainly associated with energy and iron metabolism. Promoter hypomethylation correlated with overexpression of CISD1. CISD1 expression was positively correlated with infiltrating levels of CD8+ T cells, macrophages, neutrophils, and dendritic cells (DCs) in HCC. Conclusions. These findings suggest that hypomethylation of the CISD1 promoter increases its expression in HCC. CISD1 is associated with prognosis and immune infiltrating levels of CD8+ T cells, macrophages, neutrophils, and DCs in HCC patients. These findings suggest that CISD1 can be used as a prognostic biomarker for determining prognosis in HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.