Nowadays, constructing effective statistical estimates with a limited amount of statistical information constitutes a significant practical problem. The article is devoted to applying the Bayesian scientific approach to the construction of statistical estimates of the parameters of the laws of distribution of random variables. Five distribution laws are considered: The Poisson law, the exponential law, the uniform law, the Pareto law, and the ordinary law. The concept of distribution laws that conjugate with the observed population was introduced and used. It is shown that for considered distribution laws, the parameters of the laws themselves are random variables and obey the typical law, gamma law, gamma - normal law, and Pareto law. Recalculation formulas are obtained to refine the parameters of these laws, taking into account posterior information. If we apply the recalculation formulas several times in a row, we will get some convergent process. Based on a converging process, it is possible to design a process for self-learning a system or self-tuning a system. The developed scientific approach was applied to solve the measuring problems for the testing measuring devices and technical systems. The results of constructing point estimates and constructing interval estimates for these laws' parameters are given. The results of comparison with the corresponding statistical estimates constructed by the classical maximum likelihood method are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.