Purpose The purpose of this paper is to develop a two-way coupling approach for investigating the aerodynamic stability of vehicles under the combined effect of crosswind and road adhesion. Design/methodology/approach The author develops a new two-way coupling approach, which couples large eddy simulation with multi-body dynamics (MBD), to investigate the crosswind stability on three different adhesion roads: ideal road, dry road and wet road. The comparison of the results obtained using the traditional one-way coupling approach and the new two-way coupling approach is also done to assess the necessity to use the proposed coupling technique on low adhesion roads, and the combined effect of crosswind and road adhesion on vehicle stability is analyzed. Findings The results suggest that the lower the road adhesion is, the larger deviation a vehicle generates, the more necessary to conduct the two-way coupling simulation. The combined effect of the crosswind and road adhesion can decrease a vehicle’s lateral motion on a high adhesion road after the disappearing of the crosswind. But on a low adhesion road, the vehicle tends to be unstable for its large head wind angle. The vehicle stability in crosswind on a low adhesion road needs more attention, and the investigation should consider the coupling of aerodynamics and vehicle dynamics and the combined effect of crosswind and road adhesion. Originality/value Developing a new two-way coupling approach which can capture the complex vehicle structures and the road adhesion with MBD model and the completed fluid filed structure with CFD model. The present study might be the first study considering the coupling of crosswind and low adhesion road. The proposed two-way coupling approach will be useful for researchers who study vehicle crosswind stability.
The influence of transient aerodynamics on a vehicle in a crosswind and the effect on the vehicle’s motion are investigated by employing fully coupled simulations. The fully coupled method makes the simulation data on the fluid dynamics and on the vehicle dynamics exchange in time. LES are used to investigate the movement of the transient turbulence, and wind tunnel experiments are carried out to validate the numerical method. The vehicle is simplified as a three-degree-of-freedom system which moves in only the horizontal direction. The driver’s reaction is considered when the motion of the vehicle is simulated. The results of fully coupled simulations show that the transient aerodynamic loads have a marked influence on the motion of the vehicle. The transitional method of one-way coupled simulations is also employed to obtain data. The simulation results for the two methods are compared with each other. It is found that there is large difference between the results of the two methods. The maximum side force in fully coupled simulations is about 1.22 times the value obtained by the transitional method, and there is a 0.2 m discrepancy between the peak value of the lateral displacement in fully coupled simulations and the peak value in the transitional method. The results show that the transient aerodynamic loads induced by the unsteady motion of the vehicle have a larger effect on the vehicle’s motion than do the aerodynamic loads from the transitional method. Furthermore, the results also reflect the significance of estimating the transient aerodynamic loads in simulations of the vehicle’s motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.