The translation of biological synapses onto a hardware platform is an important step toward the realization of brain‐inspired electronics. However, to mimic biological synapses, devices till‑date continue to rely on the need for simultaneously altering the polarity of an applied electric field or the output of these devices is photonic instead of an electrical synapse. As the next big step toward practical realization of optogenetics inspired circuits that exhibit fidelity and flexibility of biological synapses, optically‑stimulated synaptic devices without a need to apply polarity‑altering electric field are needed. Utilizing a unique photoresponse in black phosphorus (BP), here reported is an all‑optical pathway to emulate excitatory and inhibitory action potentials by exploiting oxidation‑related defects. These optical synapses are capable of imitating key neural functions such as psychological learning and forgetting, spatiotemporally correlated dynamic logic and Hebbian spike‑time dependent plasticity. These functionalities are also demonstrated on a flexible platform suitable for wearable electronics. Such low‐power consuming devices are highly attractive for deployment in neuromorphic architectures. The manifestation of cognition and spatiotemporal processing solely through optical stimuli provides an incredibly simple and powerful platform to emulate sophisticated neural functionalities such as associative sensory data processing and decision making.
Imprinting vision as memory is a core attribute of human cognitive learning. Fundamental to artificial intelligence systems are bioinspired neuromorphic vision components for the visible and invisible segments of the electromagnetic spectrum. Realization of a single imaging unit with a combination of in‐built memory and signal processing capability is imperative to deploy efficient brain‐like vision systems. However, the lack of a platform that can be fully controlled by light without the need to apply alternating polarity electric signals has hampered this technological advance. Here, a neuromorphic imaging element based on a fully light‐modulated 2D semiconductor in a simple reconfigurable phototransistor structure is presented. This standalone device exhibits inherent characteristics that enable neuromorphic image pre‐processing and recognition. Fundamentally, the unique photoresponse induced by oxidation‐related defects in 2D black phosphorus (BP) is exploited to achieve visual memory, wavelength‐selective multibit programming, and erasing functions, which allow in‐pixel image pre‐processing. Furthermore, all‐optically driven neuromorphic computation is demonstrated by machine learning to classify numbers and recognize images with an accuracy of over 90%. The devices provide a promising approach toward neurorobotics, human–machine interaction technologies, and scalable bionic systems with visual data storage/buffering and processing.
Atomically thin semiconductors are one of the fastest growing categories in materials science due to their promise to enable high-performance electronic and optical devices. Furthermore, a host of intriguing phenomena have been reported to occur when a semiconductor is confined within two dimensions. However, the synthesis of large area atomically thin materials remains as a significant technological challenge. Here we report a method that allows harvesting monolayer of semiconducting stannous oxide nanosheets (SnO) from the interfacial oxide layer of liquid tin. The method takes advantage of van der Waals forces occurring between the interfacial oxide layer and a suitable substrate that is brought into contact with the molten metal. Due to the liquid state of the metallic precursor, the surface oxide sheet can be delaminated with ease and on a large scale. The SnO monolayer is determined to feature p-type semiconducting behavior with a bandgap of ∼4.2 eV. Field effect transistors based on monolayer SnO are demonstrated. The synthetic technique is facile, scalable and holds promise for creating atomically thin semiconductors at wafer scale.
Tailoring emissivity and absorptivity of structured material surfaces to match atmospheric transmission spectral windows can lead to radiative cooling that consumes no external energy. Recent advances in nanofabrication technology have facilitated progress in the realization of structured metasurfaces. In particular, subwavelength dielectric resonator metasurface supporting various resonance modes can be efficient absorbers. Here, such metasurfaces are proposed and experimentally demonstrated enhanced by metal loading to obtain strong broadband thermal emission over a wide angle at mid‐infrared frequencies. This concept results in passive cooling devices that can lower temperature by 10 °C below ambient temperature. Importantly, the utilization of standard constituent materials and processes lead to scalable fabrication compatible with silicon photonics integration, which will enable effective and energy‐efficient applications in passive cooling and thermodynamic control.
Layered black phosphorus (BP), a promising 2D material, tends to oxidize under ambient conditions. While such defective BP is typically considered undesirable, defect engineering has in fact been exploited in contemporary materials to create new behaviors and functionalities. In this spirit, new opportunities arising from intrinsic defect states in BP, particularly through harnessing unique photoresponse characteristics, and demonstrating three distinct optoelectronic applications are demonstrated. First, the ability to distinguish between UV-A and UV-B radiations using a single material that has tremendous implications for skin health management is shown. Second, the same device is utilized to show an optically stimulated mimicry of synaptic behavior opening new possibilities in neuromorphic computing. Third, it is shown that serially connected devices can be used to perform digital logic operations using light. The underpinning photoresponse is further translated on flexible substrates, highlighting the viability of the technology for mechanically conformable and wearable systems. This demonstration paves the way toward utilizing the unexplored potential offered by defect engineering of 2D materials for applications spanning across a broad range of disciplines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.