Facial expression is an unspoken message essential to collaboration and effective discourse. An inner emotional state of a human is expressed using facial expressions and is very effective for communication with actual emotions. Anger, happiness, sadness, contempt, surprise, fear, disgust, and neutral are eight common expressions of humans. Scientific community proposed several face emotion recognition techniques. However, due to fewer face landmarks and their intensity for deep learning models, performance improvement for facial expression recognition still needs to be improved for accurately predicting facial emotion recognition. This study proposes a zoning-based face expression recognition (ZFER) to locate more face landmarks to perceive deep face emotions indemnity through zoning. After face extraction, landmarks from the face, such as the eyes, eyebrows, nose, forehead, and mouth, are extracted. The second step is zoning each landmark into four regions and zone-based face landmarks are passed to the VGG-16 model to generate a feature map. Finally, the feature map is given as input to fully connected neural network (FCNN) to classify facial emotions into multiple classes. Various experiments are performed on facial expression recognition (FER) 2013 and CK+ datasets to evaluate our proposed model with state-ofthe-art facial expression recognition approaches using performance assessment metrics like accuracy. The accuracy of the proposed method with face features on CK+ and FER2013 are 98.4% and 65%, respectively. The experimental zoning results improve from 98.47% to 98.74% on the CK+ dataset.
The problem of a facial biometrics system was discussed in this research, in which different classifiers were used within the framework of face recognition. Different similarity measures exist to solve the performance of facial recognition problems. Here, four machine learning approaches were considered, namely, K-nearest neighbor (KNN), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), and Principal Component Analysis (PCA). The usefulness of multiple classification systems was also seen and evaluated in terms of their ability to correctly classify a face. A combination of multiple algorithms such as PCA+1NN, LDA+1NN, PCA+ LDA+1NN, SVM, and SVM+PCA was used. All of them performed with exceptional values of above 90% but PCA+LDA+1N scored the highest average accuracy, i.e. 98%.
Kobe Bryant was one of the best players of Basketball. Data regarding his 20 years played games is available on the Kaggle. We transform the categorical features by PCA and normalize the data by minmax normalization technique. Machine learning techniques such as logistic regression, Random Forest, Linear Discriminant Analysis, Naïve bayes, Gradient Boosting, Adaboost and Neural Network are applied on pre-processed data to classify whether he made shot or not. The prediction accuracy of LR, RF, LDA, NB, GB, ABC and ANN is 67.84%,64.22%,67.82%,0.61%,67.8%,68% and 67% respectively on hold an out method. The experimental results shows that Adaboost has highest prediction accuracy as compared to others method with 5 cross validations. Finally, we have got satisfactory results as compared to our benchmark (Kaggle).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.