ObjectiveTo investigate the diagnostic value of serum neurofilament light chain (NFL) in patients with clear signs of parkinsonism but whose specific diagnosis was yet uncertain.MethodsSerum samples were collected from patients with clear signs of parkinsonism but with uncertain diagnosis at the inclusion. Clinical diagnoses of Parkinson disease (PD) and atypical parkinsonism disorders (APDs) were established after 3 years of follow-up and updated again after a maximum of 12 years in case longer follow-up data were available. Serum NFL was quantified by single molecule array in patients with PD (n = 55) and APD (n = 29, multiple system atrophy = 22, progressive supranuclear palsy = 7) and 53 nonneurologic controls.ResultsSerum NFL levels were elevated and differentiated the APD group (mean 23.8 ± 10.3 ng/L) from PD (mean 10.4 ± 4.9 ng/L) and controls (mean 11.5 ± 6.5 ng/L, p < 0.0001) with accuracy levels up to 91% (sensitivity = 86% and specificity = 85%). Serum NFL strongly correlated with CSF NFL levels (r = 0.72, p < 0.0001) in all groups and with age in PD (r = 0.78, p < 0.0001) and controls (r = 0.66, p < 0.0001). In our cohort, the probability of having APD was 76% (positive predictive value) and of having PD 92% (negative predictive value).ConclusionSerum NFL levels are markedly elevated in APD compared to PD and discriminate APDs from PD with high accuracy. Serum NFL may be a useful clinical biomarker to identify APD, even at stages when clinical symptoms are not yet conclusive.Classification of evidenceThis study provides Class II evidence that serum NFL levels accurately discriminate APDs from PD.
Parkinson’s disease (PD) and multiple system atrophy (MSA) are both part of the spectrum of neurodegenerative movement disorders and α-synucleinopathies with overlap of symptoms especially at early stages of the disease but with distinct disease progression and responses to dopaminergic treatment. Therefore, having biomarkers that specifically classify patients, which could discriminate PD from MSA, would be very useful. MicroRNAs (miRNAs) regulate protein translation and are observed in biological fluids, including cerebrospinal fluid (CSF), and may therefore have potential as biomarkers of disease. The aim of our study was to determine if miRNAs in CSF could be used as biomarkers for either PD or MSA. Using quantitative PCR (qPCR), we evaluated expression levels of 10 miRNAs in CSF patient samples from PD ( n = 28), MSA ( n = 17), and non-neurological controls ( n = 28). We identified two miRNAs (miR-24 and miR-205) that distinguished PD from controls and four miRNAs that differentiated MSA from controls (miR-19a, miR-19b, miR-24, and miR-34c). Combinations of miRNAs accurately discriminated either PD (area under the curve (AUC) = 0.96) or MSA (AUC = 0.86) from controls. In MSA, we also observed that miR-24 and miR-148b correlated with cerebellar ataxia symptoms, suggesting that these miRNAs are involved in cerebellar degeneration in MSA. Our findings support the potential of miRNA panels as biomarkers for movement disorders and may provide more insights into the pathological mechanisms related to these disorders.
Objective: Vascular amyloid β (Aβ) accumulation is the hallmark of cerebral amyloid angiopathy (CAA). The composition of cerebrospinal fluid (CSF) of CAA patients may serve as a diagnostic biomarker of CAA. We studied the diagnostic potential of the peptides Aβ38, Aβ40, Aβ42, and Aβ43 in patients with sporadic CAA (sCAA), hereditary Dutch-type CAA (D-CAA), and Alzheimer disease (AD). Methods: Aβ peptides were quantified by immunoassays in a discovery group (26 patients with sCAA and 40 controls), a validation group (40 patients with sCAA, 40 patients with AD, and 37 controls), and a group of 22 patients with D-CAA and 54 controls. To determine the diagnostic accuracy, the area under the curve (AUC) was calculated using a receiver operating characteristic curve with 95% confidence interval (CI). Results: We found decreased levels of all Aβ peptides in sCAA patients and D-CAA patients compared to controls. The difference was most prominent for Aβ42 (AUC of sCAA vs controls for discovery: 0.90, 95% CI = 0.82-0.99; for validation: 0.94, 95% CI = 0.89-0.99) and Aβ43 (AUC of sCAA vs controls for discovery: 0.95, 95% CI = 0.88-1.00; for validation: 0.91, 95% CI = 0.83-1.0). All Aβ peptides except Aβ43 were also decreased in sCAA compared to AD
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.