Human papillomavirus (HPV) 58 accounts for a notable proportion of cervical cancers in East Asia and parts of Latin America, but it is uncommon elsewhere. The reason for such ethnogeographical predilection is unknown. In our study, nucleotide sequences of E6 and E7 genes of 401 HPV58 isolates collected from 15 countries/cities across four continents were examined. Phylogenetic relationship, geographical distribution and risk association of nucleotide sequence variations were analyzed. We found that the E6 genes of HPV58 variants were more conserved than E7. Thus, E6 is a more appropriate target for type-specific detection, whereas E7 is more appropriate for strain differentiation. The frequency of sequence variation varied geographically. Africa had significantly more isolates with E6-367A (D86E) but significantly less isolates with E6-203G, -245G, -367C (prototype-like) than other regions (p ≤ 0.003). E7-632T, -760A (T20I, G63S) was more frequently found in Asia, and E7-793G (T74A) was more frequent in Africa (p < 0.001). Variants with T20I and G63S substitutions at E7 conferred a significantly higher risk for cervical intraepithelial neoplasia grade III and invasive cervical cancer compared to other HPV58 variants (odds ratio = 4.44, p = 0.007). In conclusion, T20I and/or G63S substitution(s) at E7 of HPV58 is/are associated with a higher risk for cervical neoplasia. These substitutions are more commonly found in Asia and the Americas, which may account for the higher disease attribution of HPV58 in these areas.
More than 100 HPV types have been described, 13 of which are classified as high-risk due to their association with the development of cervical cancer. The intratype genomic diversity of HPV-16 and -18 has been studied extensively, while little data have been generated for other less common high-risk types. The present study explores the nucleotide variability and phylogeny of the high-risk HPV-31, -33, -35, -52, and -58, in samples from Central Brazil. For this purpose, the LCR and the E6 and L1 genes were sequenced. Several variants of these HPV types were detected, some of which have been detected in other parts of the world. Furthermore, new variants of all types examined were characterized in a total of 13 new variants. Based on the E6 and L1 sequences, variants were described comprising conservative and non-conservative amino acid changes. For phylogenetic tree construction, samples characterized in this study were compared to others described and submitted to GenBank previously. The phylogenetic analysis of HPV-31, -33, -35, and -58 isolates did not reveal ethnic or geographical clustering as observed previously for HPV-16 and -18. HPV-35 analysis showed a dichotomic branching characteristic of viral subtypes. Interestingly, four clusters relative to the analysis of HPV-52 isolates were identified, two of which could be classified as Asian and European branches. The genomic characterization of HPV variants is crucial for understanding the intrinsic geographical relatedness and biological differences of these viruses and contributes further to studies on their infectivity and pathogenicity.
HPV-58 can be classified into 4 lineages that show some degree of ethnogeographic predilection in distribution. The evolutionary, epidemiological, and pathological characteristics of these lineages warrant further study.
BackgroundTriatomines are hematophagous insects that act as vectors of Chagas disease. Rhodnius neglectus is one of these kissing bugs found, contributing to the transmission of this American trypanosomiasis. The saliva of hematophagous arthropods contains bioactive molecules responsible for counteracting host haemostatic, inflammatory, and immune responses.Methods/Principal FindingsNext generation sequencing and mass spectrometry-based protein identification were performed to investigate the content of triatomine R. neglectus saliva. We deposited 4,230 coding DNA sequences (CDS) in GenBank. A set of 636 CDS of proteins of putative secretory nature was extracted from the assembled reads, 73 of them confirmed by proteomic analysis. The sialome of R. neglectus was characterized and serine protease transcripts detected. The presence of ubiquitous protein families was revealed, including lipocalins, serine protease inhibitors, and antigen-5. Metalloproteases, disintegrins, and odorant binding protein families were less abundant.Conclusions/SignificanceThe data presented improve our understanding of hematophagous arthropod sialomes, and aid in understanding hematophagy and the complex interplay among vectors and their vertebrate hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.