ABSTRACT:Testosterone and epitestosterone are endogenous steroids that differ in the configuration of the hydroxyl-bearing carbon at C-17. Testosterone is the predominant male sex hormone, whereas the role of epitestosterone is largely unclear. In humans, both androgens are excreted mainly as glucuronide conjugates and the urinary ratio of testosterone to epitestosterone (T/E), used to expose illicit testosterone abuse by male athletes, indicates the relative concentrations of the respective glucuronides. Some male athletes have T/E values greater than the accepted threshold value (4.0), even without testosterone abuse. We have analyzed athletes' urine samples and found that the main reason for such false-positive results in doping tests was a low epitestosterone glucuronide concentration not a high level of testosterone glucuronide. Sulfate conjugates of both testosterone and epitestosterone were also detected in the different urine samples. Glucuronidation assays with the 19 human UDP-glucuronosyltransferases (UGTs) of subfamilies UGT1A, UGT2A, and UGT2B revealed that UGT2B17 is the most active enzyme in testosterone glucuronidation. UGT2B17 does not glucuronidate epitestosterone, but inhibition studies revealed that it binds epitestosterone with affinity similar to that of testosterone. Epitestosterone glucuronidation is catalyzed mainly by UGT2B7, and the K m of this reaction is significantly lower than the K m of UGT2B17 for testosterone. Although UGT2B7 and UGT2B17 exhibited high, although converse, stereoselectivity in testosterone and epitestosterone glucuronidation, UGT2A1, an extrahepatic enzyme that is expressed mainly in the nasal epithelium, catalyzed the glucuronidation of both steroids at considerable rates and similar kinetics. The results shed new light on the substrate specificity and stereoselectivity of human UGTs.
ABSTRACT:Propranolol is a nonselective -adrenergic blocker used as a racemic mixture in the treatment of hypertension, cardiac arrhythmias, and angina pectoris. For study of the stereoselective glucuronidation of this drug, the two propranolol glucuronide diastereomers were biosynthesized, purified, and characterized. A screen of 15 recombinant human UDP-glucuronosyltransferases (UGTs) indicated that only a few isoforms catalyze propranolol glucuronidation. Analysis of UGT2B4 and UGT2B7 revealed no significant stereoselectivity, but these two enzymes differed in glucuronidation kinetics. The glucuronidation kinetics of R-propranolol by UGT2B4 exhibited a sigmoid curve, whereas the glucuronidation of the same substrate by UGT2B7 was inhibited by substrate concentrations above 1 mM. Among the UGTs of subfamily 1A, UGT1A9 and UGT1A10 displayed high and, surprisingly, opposite stereoselectivity in the glucuronidation of propranolol enantiomers. UGT1A9 glucuronidated S-propranolol much faster than R-propranolol, whereas UGT1A10 exhibited the opposite enantiomer preference. Nonetheless, the K m values for the two enantiomers, both for UGT1A9 and for UGT1A10, were in the same range, suggesting similar affinities for the two enantiomers. Unlike UGT1A9, the expression of UGT1A10 is extrahepatic. Hence, the reverse stereoselectivity of these two UGTs may signify specific differences in the glucuronidation of propranolol enantiomers between intestine and liver microsomes. Subsequent experiments confirmed this hypothesis: human liver microsomes glucuronidated S-propranolol faster than R-propranolol, whereas human intestine microsomes glucuronidated S-propranolol faster. These findings suggest a contribution of intestinal UGTs to drug metabolism, at least for UGT1A10 substrates.
ABSTRACT:We have examined the glucuronidation of androsterone (5␣-androstane-3␣-ol-17-one), etiocholanolone (5-androstane-3␣-ol-17-one), 5␣-androstane-3␣-,17-diol (5␣-diol), and 5-androstane-3␣-, 17-diol (5-diol) by 19 recombinant human UDP-glucuronosyltransferases (UGTs). The results reveal large differences in stereo-and regioselectivity between UGT2B7, UGT2B15, and UGT2B17. UGT2B7 conjugated all four androgens at the 3-OH but not at the 17-OH that is available in both diols. UGT2B7 exhibited a higher glucuronidation rate toward the steroids with a flat backbone, androsterone and 5␣-diol, compared with etiocholanolone and 5-diol, which have a bent backbone. UGT2B17 readily glucuronidated androsterone and, particularly, etiocholanolone at the 3-OH, but in the two diols it exhibited high preference for the 17-OH and low glucuronidation rate at the 3-OH. UGT2B15 did not glucuronidate any of the studied four androgens at the 3-OH, but it did conjugate both diols at the 17-OH, with a clear preference for 5␣-diol. Of the UGT1A subfamily, only UGT1A4 catalyzed the glucuronidation of androsterone and 5␣-diol at measurable rates, even if low. UGT2A1 and UGT2A2 glucuronidated most compounds in this study, but mostly at rather low rates. An exception was the glucuronidation of etiocholanolone by UGT2A1 that revealed a very low substrate affinity in combination with very high V max value. The results shed new light on the substrate selectivity of individual UGTs in steroid glucuronidation. In addition they bear implications for doping analyses and its dependence of genetic polymorphism because testosterone is a precursor in the biosynthesis of these four androgens, whereas the contribution of UGT2B17 to their glucuronidation varies greatly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.