Background Pregnancy-induced immunological changes contribute to the maternal immune tolerance. Nuclear factor kappa B (NF-κB) pathway participates in regulating both innate and adaptive immunities, and lymph nodes play key roles in adaptive immune reaction. However, it is unclear whether early pregnancy changes the expression of NF-κB family in maternal lymph node in sheep. Methods In this study, the samples of inguinal lymph nodes were collected from ewes on day 16 of the estrous cycle, and on days 13, 16 and 25 of pregnancy, and expression of NF-κB family, including NF-κB p105 (NFKB1), NF-κB p100 (NFKB2), p65 (RELA), RelB (RELB) and c-Rel (REL), were analyzed through real-time quantitative PCR, Western blot and immunohistochemical analysis. Results The expression levels of NF-κB p105 and c-Rel downregulated, but NF-κB p100 upregulated on day 25 of pregnancy. The expression levels of p65, RelB and c-Rel peaked at day 13 of pregnancy, and expression level of RelB was higher during early pregnancy comparing to day 16 of the estrous cycle. In addition, p65 protein was located in the subcapsular sinus and lymph sinuses. Conclusion This paper reported for the first time that early pregnancy has effects on the expression of NF-κB family, which may contribute to the maternal immunoregulation through blood circulation and lymph circulation during early pregnancy in sheep.
There is a systemic immunological adaptation to maintaining tolerance towards the allogeneic fetus, and the liver participates in the adaptive immune tolerance during normal pregnancy. Nuclear factor kappa B (NF-κB) signalings contribute to immune regulation and liver homoeostasis. The objective of this study is to explore the
There is a pregnant maternal immunological tolerance that protects the fetus and promotes its growth, and nuclear factor kappa B (NF-κB) family participates in the regulation of innate immune and adaptive immune responses. The thymus is related to establishing central tolerance, and early pregnancy has effects on expression of a good number of genes and proteins in the maternal thymus in sheep. However, it is unclear whether early pregnancy changes expression of NF-κB subunits in the ovine thymus. In this study, the thymic samples were collected from day 16 of non-pregnant ewes, and days 13, 16 and 25 of pregnant ewes, and the expression of NF-κB members (NF-κB1, NF-κB2, RelA, RelB and c-Rel) was analyzed through real-time quantitative PCR, Western blot and immunohistochemical analysis. The results showed that c-Rel mRNA and protein upregulated at day 25 of pregnancy, and NF-κB1 mRNA and proteins increased at days 16 and 25 of pregnancy, and RelB mRNA and proteins enhanced during early pregnancy. However, expression levels of NF-κB2 and RelA were decreased during early pregnancy, but upregulated from day 13 to 25 of pregnancy. In addition, the RelA protein was located in the epithelial reticular cells, capillaries and thymic corpuscles. This paper reported for the first time that early pregnancy induced expression of NF-κB1, RelB and c-Rel, but inhibited expression of NF-κB2 and RelA in the maternal thymus during early pregnancy, which is involved in the central immune tolerance, and helpful for successful pregnancy in sheep.
There is pregnant maternal immunological tolerance that protects the fetus and promotes its growth, and nuclear factor kappa B (NF-κB) family participates in the regulation of innate immune and adaptive immune responses. The thymus is related to establishing central tolerance, and early pregnancy has effects on expression of a good number of genes and proteins in the maternal thymus in sheep. However, it is unclear if early pregnancy changes expression of NF-κB subunits in the ovine thymus. In this study, the thymic samples were collected from day 16 of non-pregnant ewes, and days 13, 16 and 25 of pregnant ewes, and the expression of NF-κB members (NF-κB1, NF-κB2, RelA, RelB and c-Rel) were analyzed through real-time quantitative PCR, Western blot and immunohistochemical analysis. The results showed that c-Rel mRNA and protein upregulated at day 25 of pregnancy, and NF-κB1 mRNA and proteins increased at days 16 and 25 of pregnancy, and RelB mRNA and proteins enhanced during early pregnancy. However, expression of NF-κB2 and RelA was decreased during early pregnancy, but upregulated from day 13 to 25 of pregnancy. In addition, the RelA protein was located in the epithelial reticular cells, capillaries and thymic corpuscles. This paper reported for the first time that early pregnancy induced expression of NF-κB1, RelB and c-Rel, but inhibited expression of NF-κB2 and RelA in the maternal thymus during early pregnancy, which is involved in the central immune tolerance, and helpful for successful pregnancy in sheep.
(1) Background: Cortisol and melatonin (MT) act in regulating follicular development. We hypothesized that abnormal levels of cortisol, MT, and steroids in theca interna cells might be involved in the development of follicular cysts in sows. (2) Methods: To test this hypothesis, we measured the mRNA levels of enzymes involved in steroid hormone synthesis, the glucocorticoid receptor (GR), and melatonin receptors (MTRs) in theca interna cells of cystic and normal porcine follicles. (3) Results: The concentrations of estradiol, progesterone, and cortisol were greater in cystic follicles than in control ones (p = 0.034, p = 0.020, p = 0.000), but the concentration of MT was significantly lower (p = 0.045). The levels of GR, 11β-HSD1, and 11β-HSD2 were higher in cystic follicles than in control l follicles. MT types 1 and 2 were significantly lower in cystic follicles (p < 0.05). The mRNA expression levels of genes encoding the steroid hormone synthesis enzymes, steroidogenic acute regulatory protein (StAR), recombinant cytochrome P45011A1 (CYP11A1), and 3β-hydroxysteroid dehydrogenase (3β-HSD) in theca interna cells of cystic follicles were significantly higher than in control follicles. Thus, there was disruption of hormone secretion in the fluid of cystic follicles in sows. (4) Conclusions: The levels of steroid hormones, cortisol and MT are disrupted in porcine cystic follicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.