Background: Severe asthma exacerbation is an important comorbidity of the 2009 HIN1 pandemic [A(H1N1)pdm09] in asthmatic patients. However, the mechanisms underlying severe asthma exacerbation remain unknown. In this study, airway hyperresponsiveness (AHR) was measured in paediatric asthma patients infected with A(H1N1)pdm09. We also evaluated AHR in asthmatic mice with A(H1N1)pdm09 infection and those with seasonal influenza for comparison. Methods: AHRs in asthmatic children were defined as the provocative acetylcholine concentration causing a 20% reduction in FEV 1.0 (PC 20 ). To investigate the pathophysiology using animal models, BALB/c mice aged 6-8 weeks were sensitized and challenged with ovalbumin. Either mouse-adapted A(H1N1)pdm09, seasonal H1N1 virus (1×10 5 pfu/20 μL), or mock treatment as a control was administered intranasally. At 3, 7, and 10 days after infection, each group of mice was evaluated for AHR by methacholine challenge using an animal ventilator, flexiVent®. Lung samples were resected and observed using light microscopy to assess the degree of airway inflammation. Results: AHRs in the children with bronchial asthma were temporarily increased, and alleviated by 3 months after discharge. AHR was significantly enhanced in A(H1N1)pdm09-infected asthmatic mice compared to that in seasonal H1N1-infected mice (p<0.001), peaking at 7 days post-infection and then becoming similar to control levels by 10 days post-infection. Histopathological examination of lung tissues showed more intense infiltration of inflammatory cells and severe tissue destruction in A(H1N1)pdm09-infected mice at 7 days post-infection than at 10 days post-infection. Conclusions: Our results suggest that enhanced AHR could contribute to severe exacerbation in human asthmatic patients with A(H1N1)pdm09 infection.
Background Severe asthma exacerbation is an important comorbidity of the 2009 HIN1 pandemic (A(H1N1)pdm09) in asthmatic patients. However, the mechanisms underlying severe asthma exacerbation remain unknown. In this study, airway hyperresponsiveness (AHR) was measured in pediatric asthma patients infected with A(H1N1)pdm09. We also evaluated AHR in asthmatic mice with A(H1N1)pdm09 infection and those with seasonal influenza for comparison. Methods AHRs in asthmatic children were defined as the provocative acetylcholine concentration causing a 20% reduction in forced expiratory volume in 1 s (PC20). To investigate the pathophysiology using animal models, BALB/c mice aged 6‐8 weeks were sensitized and challenged with ovalbumin. Either mouse‐adapted A(H1N1)pdm09, seasonal H1N1 virus (1 × 105 pfu/20 μl), or mock treatment as a control was administered intranasally. At 3, 7, and 10 days after infection, each group of mice was evaluated for AHR by methacholine challenge using an animal ventilator, flexiVent. Lung samples were resected and observed using light microscopy to assess the degree of airway inflammation. Results AHRs in the children with bronchial asthma were temporarily increased, and alleviated by 3 months after discharge. AHR was significantly enhanced in A(H1N1)pdm09‐infected asthmatic mice compared to that in seasonal H1N1‐infected mice (p < .001), peaking at 7 days postinfection and then becoming similar to control levels by 10 days postinfection. Histopathological examination of lung tissues showed more intense infiltration of inflammatory cells and severe tissue destruction in A(H1N1)pdm09‐infected mice at 7 days postinfection than at 10 days postinfection. Conclusion Our results suggest that enhanced AHR could contribute to severe exacerbation in human asthmatic patients with A(H1N1)pdm09 infection.
Background: Severe asthma exacerbation is an important comorbidity of the 2009 HIN1 pandemic [A(H1N1)pdm09] in asthmatic patients. However, the mechanisms underlying severe asthma exacerbation remain unknown. Using a mouse model of asthma, we evaluated airway hyperresponsiveness (AHR) in mice with A(H1N1)pdm09 infection and those with seasonal influenza for comparison. We also measured AHR in paediatric participants infected with A(H1N1)pdm09. Methods: BALB/c mice aged 6-8 weeks were sensitized and challenged with ovalbumin. Either mouse-adapted A(H1N1)pdm09, seasonal H1N1 virus (1×10 5 pfu/20 μL), or mock treatment as a control was administered intranasally. At 3, 7, and 10 days after infection, each group of mice was evaluated for AHR by methacholine challenge using an animal ventilator, flexiVent®. Lung samples were resected and observed using light microscopy to assess the degree of airway inflammation. AHRs in paediatric participants were defined as the provocative acetylcholine concentration causing a 20% reduction in FEV 1.0 (PC 20). Results: Airway resistance was significantly enhanced in A(H1N1)pdm09-infected asthmatic mice compared to that in seasonal H1N1-infected mice (p<0.001), peaking at 7 days post-infection and then becoming similar to control levels by 10 days post-infection. Histopathological examination of lung tissues showed more intense infiltration of inflammatory cells and severe tissue destruction in A(H1N1)pdm09-infected mice at 7 days post-infection than at 10 days post-infection. AHRs in the paediatric participants were temporarily increased, and alleviated by 3 months after discharge. Conclusions: Our results suggest that enhanced AHR could contribute to severe exacerbation in human asthmatic patients with A(H1N1)pdm09 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.