With the increasing competition for spectrum resources, the technology of simultaneous transmit and receive (STAR) is attracting more and more attention. However, full digital aperture-level simultaneous transmit and receive (FD-ALSTAR) is difficult to implement in a large-scale array with high frequency and bandwidth due to its high hardware cost and high power consumption. Therefore, this paper combines FD-ALSTAR with hybrid beamforming technology and proposes two categories and four types of aperture-level simultaneous transmit and receive simplified structures based on hybrid beamforming to reduce the number of RF links (NRF), hardware cost, and operation power consumption. In view of the complexity of the hardware of the fully connected hybrid beamforming structure and the low amplitude and phase control accuracy of the partially connected hybrid beamforming structure, an aperture-level simultaneous transmit and receive simplified structure based on hybrid beamforming of switching network (HBF-SN-ALSTAR) is proposed, and the mathematical model is established. The simulation results show that the simplified structure proposed in this paper can effectively reduce the NRF and power consumption, increase system redundancy, and improve system reliability. In a 144 × 144 antenna array, under the condition that NRF = 16 of HBF-SN-ALSTAR, that is, 1/9 of the number of FD-ALSTAR RF links, the effective isotropic isolation (EII) of the system is only 17 dB less than that of the FD-ALSTAR. The experimental results fully prove the effectiveness of the simplified structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.