Thermal spin injection is a unique and fascinating method for generating spin current. If magnetization can be controlled by thermal spin injection, various advantages will be provided in spintronic devices, through its wireless controllability. However, the generation efficiency of thermal spin injection is believed to be lower than that of electrical spin injection. Here, we explore a suitable ferromagnetic metal for an efficient thermal spin injection, via systematic experiments based on diffusive spin transport under temperature gradients. Since a ferromagnetic metal with strong spin splitting is expected to have a large spin-dependent Seebeck coefficient, a lateral spin valve based on CoFe electrodes has been fabricated. However, the superior thermal spin injection property has not been observed, because the CoFe electrode retained its crystalline signature-where s-like electrons dominate the transport property in the ferromagnet. To suppress the crystalline signature, we adopt a CoFeAl electrode, in which the Al impurity significantly reduces the contribution from s-like electrons. Highly efficient thermal spin injection has been demonstrated using this CoFeAl electrode. Further optimization for thermal spin injection has been demonstrated by adjusting the Co and Fe composition.
We demonstrate that the background signal in the nonlocal spin-valve measurement can be sufficiently suppressed by optimizing the electrode design of the lateral spin valve. A relatively long length scale of heat propagation produces spin-independent thermoelectric signals under the combination of the Peltier and Seebeck effects. These unfavorable signals can be reduced by mixing the Peltier effects in two transparent ferromagnetic/nonmagnetic junctions. Proper understanding of the contribution from the heat current in no spin-current area is a key for effective reduction of the spin-independent background signal.
A lateral spin valve consisting of highly spin-polarized CoFeAl electrodes with a CoFeAl/Cu bilayer spin channel has been developed. Despite a large spin absorption into the CoFeAl capping channel layer, an efficient spin injection and detection using the CoFeAl electrodes enable us to observe a clear spin valve signal. We demonstrate that the nonlocal spin accumulation signal is significantly modulated depending on the relative angle of the magnetizations between the spin injector and absorber. The observed modulation phenomena is explained by the longitudinal and transverse spin absorption effects into the CoFeAl channel layer with the spin resistance model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.