Using nonequilibrium molecular dynamics and lattice dynamics, we investigate phonon conduction on twodimensional graphene/boron nitride superlattices with varying periods and interface structures. As the period of superlattice increases to a critical value near 5 nm the lattice thermal conductivity drops sharply to a minimum, and beyond that it smoothly increases with the period. We show that the minimum in the thermal conductivity arises from a competition between lattice dispersion and anharmonic effects such as interface scattering. The initial reduction of thermal conductivity can partially be accounted for by harmonic wave effects induced by interfacial modulation, such as the opening of phononic band gaps and reduction of group velocity. Beyond the minimum, reduced inelastic interface scattering is responsible for the recovery. The overall range of thermal conductivity exhibited by the superlattices is substantially reduced with respect to the parent materials. A universal scaling of the thermal conductivity with total superlattice length is found, suggesting that the critical period is independent of total length and that long-wavelength phonons are dominant carriers. Furthermore, we demonstrate the ultrasensitivity of thermal conductivity to interfacial defects and superlattice periodicity disorder.
Vacancy-ordered lead-free perovskites with more-stable crystalline structures have been intensively explored as the alternatives for resolving the toxic and long-term stability issues of lead halide perovskites (LHPs). The dispersive energy bands produced by the closely packed halide octahedral sublattice in these perovskites are meanwhile anticipated to facility the mobility of charge carriers. However, these perovskites suffer from unexpectedly poor charge carrier transport. To tackle this issue, we have employed the ultrafast, elementalspecific X-ray transient absorption (XTA) spectroscopy to directly probe the photoexcited electronic and structural dynamics of a prototypical vacancy-ordered lead-free perovskite (Cs3Bi2Br9). We have discovered that the photogenerated holes quickly self-trapped at Br centers, simultaneously distorting the local lattice structure, likely forming small polarons in the configuration of Vk center (Br2dimer). More significantly, we have found a surprisingly long-lived, structural distorted state with a lifetime of ∼59 μs, which is ∼3 orders of magnitude slower than that of the charge carrier recombination. Such long-lived structural distortion may produce a transient "background" under continuous light illumination, influencing the charge carrier transport along the lattice framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.