Enthalpies of formation, ΔH, in both the gas and condensed phase, and enthalpies of sublimation or vaporization have been estimated for hydrazine, NHNH, and its 36 various derivatives using quantum chemical calculations. The composite G4 method has been used along with isodesmic reaction schemes to derive a set of self-consistent high-accuracy gas-phase enthalpies of formation. To estimate the enthalpies of sublimation and vaporization with reasonable accuracy (5-20 kJ/mol), the method of molecular electrostatic potential (MEP) has been used. The value of ΔH(NHNH,g) = 97.0 ± 3.0 kJ/mol was determined from 75 isogyric reactions involving about 50 reference species; for most of these species, the accurate ΔH(g) values are available in Active Thermochemical Tables (ATcT). The calculated value is in excellent agreement with the reported results of the most accurate models based on coupled cluster theory (97.3 kJ/mol, the average of six calculations). Thus, the difference between the values predicted by high-level theoretical calculations and the experimental value of ΔH(NHNH,g) = 95.55 ± 0.19 kJ/mol recommended in the ATcT and other comprehensive reference sources is sufficiently large and requires further investigation. Different hydrazine derivatives have been also considered in this work. For some of them, both the enthalpy of formation in the condensed phase and the enthalpy of sublimation or vaporization are available; for other compounds, experimental data for only one of these properties exist. Evidence of accuracy of experimental data for the first group of compounds was provided by the agreement with theoretical ΔH(g) value. The unknown property for the second group of compounds was predicted using the MEP model. This paper presents a systematic comparison of experimentally determined enthalpies of formation and enthalpies of sublimation or vaporization with the results of calculations. Because of relatively large uncertainty in the estimated enthalpies of sublimation, it was not always possible to evaluate the accuracy of the experimental values; however, this model allowed us to detect large errors in the experimental data, as in the case of 5,5'-hydrazinebistetrazole. The enthalpies of formation and enthalpies of sublimation or vaporization have been predicted for the first time for ten hydrazine derivatives with no experimental data. A recommended set of self-consistent experimental and calculated gas-phase enthalpies of formation of hydrazine derivatives can be used as reference ΔH(g) values to predict the enthalpies of formation of various hydrazines by means of isodesmic reactions.
4-Chloro-L-kynurenine (3-(4-chloroanthraniloyl)-L-alanine, L-4-ClKyn), an amino acid known as a prospective antidepressant, was recently for the first time found in nature in the lipopeptide antibiotic taromycin. Here, we report another instance of its identification in a natural product: 4-chloro-L-kynurenine was isolated from acidic hydrolysis of a new complex peptide antibiotic INA-5812. L-4-ClKyn is a fluorescent compound responsible for the fluorescence of the above antibiotic. Whereas fluorescence of 4-chlorokynurenine was not reported before, we synthesized the racemic compound and studied its emission in various solvents. Next, we prepared conjugates of DL-4-ClKyn with two suitable energy acceptors, BODIPY FL and 3-(phenylethynyl)perylene (PEPe), and studied fluorescence of the derivatives. 4-Chloro-DL-kynurenine emission is not detected in both conjugates, thus evidencing effective energy transfer. However, BODIPY FL emission in the conjugate is substantially reduced, probably due to collisional or photoinduced charge-transfer-mediated quenching. The intrinsic fluorescence of L-4-ClKyn amino acid in antibiotics paves the way for spectral studies of their mode of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.