Functional gradient materials (FGM) have many excellent properties, and high-performance gradient coating exhibits good prospective application. In this paper, the nano-grain Ni/ZrO2 gradient coating was prepared by double pulse electrodeposition (BP). The surface morphology, crystal structure and electrochemical corrosion resistance of the nano-grain Ni/ZrO2 coating and Ni coating, annealed at different temperatures (400–800 °C), have been compared. In the vertical direction to the substrate surface, the content of ZrO2 increases from 0% to 34.99%. X-ray diffraction (XRD) revealed that the average crystal size of Ni/ZrO2 gradient coating gradually increases from 13.75 to 27.75 nm, and the crystal structure is a face-centered cubic (FCC). The main crystal orientation faces are (111) and (200), while the (200) face exhibited a stronger preferred orientation. Compared with the Ni coating by scanning electron microscopy, the surface morphology of double pulse fabricated Ni/ZrO2 gradient coating was revealed as being smoother, denser, and having fewer pores, and the crystal particle size distribution became narrow. X-ray photoelectron spectroscopy (XPS) shows that the chemical binding states of elements Ni and Zr have been altered. The binding energies of 2p3/2 and 2p1/2 for Ni have been increased, resulting in a higher electron donor state of Ni. The binding energy of 3d5/2 and 3d3/2 of Zr4+ in ZrO2 is decreased, thus becoming better electron acceptors. Chemical bonding has been formed at the Ni/ZrO2 interface. This study demonstrated that double pulse electrodeposition is a promising fabrication method for functional gradient coatings for high temperature applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.