Graphene is attracting vast interest due to its superior electronic and mechanical properties. However, structure and electronic properties of its edge are often neglected, although they are important for nanoscale devices because the edge ratio becomes larger by decreasing the device size. In this study, we suggest a way to fabricate a graphene with atomically aligned zigzag edges by applying hydrogen-plasma etching (HPE) technique. By patterning a graphene prior to HPE, it is succeeded to shape a graphene in desired structure. Both atomic force microscopy and Raman spectroscopy confirm that the graphene shaped by this technique preserves its honeycomb structure even on the edge, which is aligned with zigzag structure. Although the mechanism of the anisotropic etching by hydrogen-plasma have not been clarified yet, the sample position dependence of the etching rate suggests that the hydrogen-radicals are responsible for the anisotropic etching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.