The meninges are a membranous structure enveloping the central nervous system (CNS) that host a rich repertoire of immune cells mediating CNS immune surveillance. Here, we report that the meninges contain a pool of monocytes and neutrophils supplied not from the blood, but by adjacent skull and vertebral bone marrow. Under pathological conditions, including spinal cord injury and neuroinflammation, CNS-infiltrating myeloid cells can originate from brain borders and display transcriptional signatures distinct from their blood-derived counterparts. Thus, CNS borders are populated by myeloid cells from adjacent bone-marrow niches, strategically placed to supply innate immune cells under homeostatic and pathological conditions. These findings call for reinterpretation of immune-cell infiltration into the CNS during injury and autoimmunity and may inform future therapeutic approaches harnessing meningeal immune cells.
Aging leads to a progressive deterioration of meningeal lymphatics and peripheral immunity, which may accelerate cognitive decline. We hypothesized that an age-related reduction in C-C chemokine receptor type 7 (CCR7)–dependent egress of immune cells through the lymphatic vasculature mediates some aspects of brain aging and potentially exacerbates cognitive decline and Alzheimer’s disease–like brain β-amyloid (Aβ) pathology. We report a reduction in CCR7 expression by meningeal T cells in old mice that is linked to increased effector and regulatory T cells. Hematopoietic CCR7 deficiency mimicked the aging-associated changes in meningeal T cells and led to reduced glymphatic influx and cognitive impairment. Deletion of CCR7 in 5xFAD transgenic mice resulted in deleterious neurovascular and microglial activation, along with increased Aβ deposition in the brain. Treating old mice with anti-CD25 antibodies alleviated the exacerbated meningeal regulatory T cell response and improved cognitive function, highlighting the therapeutic potential of modulating meningeal immunity to fine-tune brain function in aging and in neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.