Spike timing-dependent plasticity (STDP) of glutamatergic synapses is a Hebbian associative plasticity that may underlie certain forms of learning. A cardinal feature of STDP is its dependence on the temporal order of presynaptic and postsynaptic spikes during induction: pre–post (positive) pairings induce t-LTP (timing-dependent long-term potentiation) whereas post–pre (negative) pairings induce t-LTD (timing-dependent long-term depression). Dopamine (DA), a reward signal for behavioral learning, is believed to exert powerful modulations on synapse strength and plasticity, but its influence on STDP has remained incompletely understood. We previously showed that DA extends the temporal window of t-LTP in the prefrontal cortex (PFC) from +10 to +30 ms, gating Hebbian t-LTP. Here, we examined DA modulation of synaptic plasticity induced at negative timings in layer V pyramidal neurons on mouse medial PFC slices. Using a negative timing STDP protocol (60 post–pre pairings at 0.1 Hz, δt = -30 ms), we found that DA applied during post–pre pairings did not produce LTD, but instead enabled robust LTP. This anti-Hebbian t-LTP depended on GluN2B-containing NMDA receptors. Blocking D1- (D1Rs), but not D2- (D2Rs) class DA receptors or disrupting cAMP/PKA signaling in pyramidal neurons also abolished this atypical t-LTP, indicating that it was mediated by postsynaptic D1R-cAMP/PKA signaling in excitatory synapses. Unlike DA-enabled Hebbian t-LTP that requires suppression of GABAergic inhibition and cooperative actions of both D1Rs and D2Rs in separate PFC excitatory and inhibitory circuits, DA-enabled anti-Hebbian t-LTP occurred under intact inhibitory transmission and only required D1R activation in excitatory circuit. Our results establish DA as a potent modulator of coincidence detection during associative synaptic plasticity and suggest a mechanism by which DA facilitates input-target association during reward learning and top-down information processing in PFC circuits.
Excessive activation of the N-Methyl-D-Aspartate (NMDA) receptor and the neurotransmitter dopamine (DA) mediate neurotoxicity and neurodegeneration under many neurological conditions, including Huntington's disease (HD), an autosomal dominant neurodegenerative disease characterized by the preferential loss of medium spiny projection neurons (MSNs) in the striatum. PSD-95 is a major scaffolding protein in the postsynaptic density (PSD) of dendritic spines, where a classical role for PSD-95 is to stabilize glutamate receptors at sites of synaptic transmission. Our recent studies indicate that PSD-95 also interacts with the D1 DA receptor localized in spines and negatively regulates spine D1 signaling. Moreover, PSD-95 forms ternary protein complexes with D1 and NMDA receptors, and plays a role in limiting the reciprocal potentiation between both receptors from being escalated. These studies suggest a neuroprotective role for PSD-95. Here we show that mice lacking PSD-95, resulting from genetic deletion of the GK domain of PSD-95 (PSD-95-ΔGK mice), sporadically develop progressive neurological impairments characterized by hypolocomotion, limb clasping, and loss of DARPP-32-positive MSNs. Electrophysiological experiments indicated that NMDA receptors in mutant MSNs were overactive, suggested by larger, NMDA receptor-mediated miniature excitatory postsynaptic currents (EPSCs) and higher ratios of NMDA- to AMPA-mediated corticostriatal synaptic transmission. In addition, NMDA receptor currents in mutant cortical neurons were more sensitive to potentiation by the D1 receptor agonist SKF81297. Finally, repeated administration of the psychostimulant cocaine at a dose regimen not producing overt toxicity-related phenotypes in normal mice reliably converted asymptomatic mutant mice to clasping symptomatic mice. These results support the hypothesis that deletion of PSD-95 in mutant mice produces concomitant overactivation of both D1 and NMDA receptors that makes neurons more susceptible to NMDA excitotoxicity, causing neuronal damage and neurological impairments. Understanding PSD-95-dependent neuroprotective mechanisms may help elucidate processes underlying neurodegeneration in HD and other neurological disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.