ZnO porous thin films were synthesized as antireflection coatings via a sol–gel dip-coating method with polyethylene glycol (PEG1000) utilized as a polymeric porogen on alumina transparent ceramics. The pore formation mechanism of the ZnO porous thin films was proposed through thermal and Fourier transformation infrared spectrometer (FTIR) analyses. The effect of sol concentrations on crystal structure, microstructure, and optical properties was also discussed. The experiment results indicated that all the ZnO thin films exhibited a hexagonal wurtzite structure with their preferred orientation along a (0 0 2) plane by X-ray diffraction (XRD) patterns. The grain size of the films increased from 30.5 to 37.4 nm with the sol concentration ranging from 0.2 to 1.0 M. Furthermore, scanning electron microscopy (SEM) images show that the pores on the surface were observed to first decrease as the sol concentration increased and then to disappear as the sol concentration continued to increase. The UV spectrum presents a maximum transmittance of 93.5% at a wavelength of 600 nm at a concentration of 0.6 M, which will be helpful in the practical applications of ZnO porous film on alumina transparent ceramic substrates. The pore formation mechanism of ZnO porous thin films can be ascribed to ring-like network structures between the PEG1000 and zinc oligomers under the phase separation effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.