The Saccharomyces Genome Database (SGD) provides Internet access to the complete Saccharomyces cerevisiae genomic sequence, its genes and their products, the phenotypes of its mutants, and the literature supporting these data. The amount of information and the number of features provided by SGD have increased greatly following the release of the S.cerevisiae genomic sequence, which is currently the only complete sequence of a eukaryotic genome. SGD aids researchers by providing not only basic information, but also tools such as sequence similarity searching that lead to detailed information about features of the genome and relationships between genes. SGD presents information using a variety of user-friendly, dynamically created graphical displays illustrating physical, genetic and sequence feature maps. SGD can be accessed via the World Wide Web at http://genome-www.stanford.edu/Saccharomyces/
In synchronized rat or mouse cells infected with Moloney murine leukemia virus (MLV), integration of viral DNA and production of viral proteins occur only after the cells traverse mitosis. Integration is blocked when cells are prevented from progressing through mitosis. Viral nucleoprotein complexes isolated from arrested cells contain full‐length viral DNA and can integrate this viral DNA in vitro, showing that the block to integration in arrested cells is not due to a lack of mature integration machinery. When infected cells traverse mitosis, there is a sharp increase in nuclear accumulation of viral DNA. The dependence of integration on mitosis may therefore be due to a requirement for mitosis and nuclear envelope breakdown for entry of the viral integration complex into the nucleus.
FKS1 and FKS2 are alternative subunits of the glucan synthase complex, which is responsible for synthesizing 1,3--glucan chains, the major structural polymer of the Saccharomyces cerevisiae cell wall. Expression of FKS1 predominates during growth under optimal conditions. In contrast, FKS2 expression is induced by mating pheromone, high extracellular [Ca 2؉ ], growth on poor carbon sources, or in an fks1 mutant. Induction of FKS2 expression in response to pheromone, CaCl 2 , or loss of FKS1 function requires the Ca 2؉ /calmodulindependent protein phosphatase calcineurin. Therefore, a double mutant in calcineurin (CNB1) and FKS1 is inviable due to a deficiency in FKS2 expression. To identify novel regulators of FKS2 expression, we isolated genes whose overexpression obviates the calcineurin requirement for viability of an fks1 mutant. Two components of the cell integrity signaling pathway controlled by the RHO1 G protein (MKK1 and RLM1) were identified through this screen. This signaling pathway is activated during growth at moderately high temperatures. We demonstrate that calcineurin and the cell integrity pathway function in parallel, through separable promoter elements, to induce FKS2 expression during growth at 39°C. Because RHO1 also serves as a regulatory subunit of the glucan synthase, our results define a regulatory circuit through which RHO1 controls both the activity of this enzyme complex and the expression of at least one of its components. We show also that FKS2 induction during growth on poor carbon sources is a response to glucose depletion and is under the control of the SNF1 protein kinase and the MIG1 transcriptional repressor. Finally, we show that FKS2 expression is induced as cells enter stationary phase through a SNF1-, calcineurin-, and cell integrity signalingindependent pathway.The cell wall of the budding yeast Saccharomyces cerevisiae is required to maintain cell shape and integrity (4,20). Vegetative proliferation requires that the cell remodels its wall to accommodate growth. The main structural components responsible for the rigidity of the yeast cell wall are 1,3--linked glucan polymers with some branches through 1,6- linkages. The biochemistry of the yeast enzyme complex that catalyzes the synthesis of 1,3--glucan chains has been studied extensively (15, 29), and three genes that encode components of this complex have been identified. A pair of closely related genes, FKS1 and FKS2, encode alternative subunits of the 1,3--glucan synthase (GS) (8,15,28,36). Either FKS1 or FKS2 function is sufficient for GS activity and cell viability. Additionally, the Rho1 GTPase is an essential regulatory subunit of the GS complex, serving to stimulate GS activity in a GTP-dependent manner (9, 35).A second essential function of RHO1 is to regulate the cell integrity signaling pathway by binding and activating protein kinase C (19, 33), which is encoded by PKC1 (25). Loss of PKC1 function results in a cell lysis defect that is attributable to a deficiency in cell wall construction (23,24,34 ...
Integration of the viral genome into the nuclear DNA of a host cell plays a pivotal role in the replication of retroviruses. We have developed an in vitro method for studying the biochemistry of human immunodeficiency virus (HIV) integration by using extracts from HIV-infected cells. Analysis of the reaction products showed that HIV integration in vitro accurately reproduces the in vivo process. Integration occurred without apparent specificity for the target sequence, and the integrated provirus was directly flanked by a 5-base-pair duplication of DNA from the target site. HIV integration did not require a high-energy cofactor, and the enzymatic activities required for integration were recovered with the viral DNA when cell extracts were fractionated by gel exclusion chromatography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.