The persistence of latent HIV-1 reservoirs throughout combination antiretroviral therapy (cART) is a major barrier on the path to achieving a cure for AIDS. It has been shown that bromodomain and extra-terminal (BET) inhibitors could reactivate HIV-1 latency, but restrained from clinical application due to their toxicity and side effects. Thus, identifying a new type of BET inhibitor with high degrees of selectivity and safety is urgently needed. Apabetalone is a small-molecule selective BET inhibitor specific for second bromodomains, and has been evaluated in phase III clinical trials that enrolled patients with high-risk cardiovascular disorders, dyslipidemia, and low HDL cholesterol. In the current study, we examined the impact of apabetalone on HIV-1 latency. We showed that apabetalone (10-50 μmol/L) dose-dependently reactivated latent HIV-1 in 4 types of HIV-1 latency cells in vitro and in primary human CD4 T cells ex vivo. In ACH2 cells, we further demonstrated that apabetalone activated latent HIV-1 through Tat-dependent P-TEFB pathway, i.e., dissociating bromodomain 4 (BDR4) from the HIV-1 promoter and recruiting Tat for stimulating HIV-1 elongation. Furthermore, we showed that apabetalone (10-30 μmol/L) caused dose-dependent cell cycle arrest at the G/G phase in ACH2 cells, and thereby induced the preferential apoptosis of HIV-1 latent cells to promote the death of reactivated reservoir cells. Notably, cardiovascular diseases and low HDL cholesterol are known as the major side effects of cART, which should be prevented by apabetalone. In conclusion, apabetalone should be an ideal bifunctional latency-reversing agent for advancing HIV-1 eradication and reducing the side effects of BET inhibitors.
HIV-1 transmembrane protein gp41 plays a crucial role by forming a stable six-helix bundle during HIV entry. Due to highly conserved sequence of gp41, the development of an effective and safe small-molecule compound targeting gp41 is a good choice. Currently, natural polyanionic ingredients with anti-HIV activities have aroused concern. Here, we first discovered that a glycosylated dihydrochalcone, trilobatin, exhibited broad anti-HIV-1 activity and low cytotoxicity in vitro. Site-directed mutagenesis analysis suggested that the hydrophobic residue (I564) located in gp41 pocket-forming site is pivotal for anti-HIV activity of trilobatin. Furthermore, trilobatin displayed synergistic anti-HIV activities combined with other antiretroviral agents. Trilobatin has a good potential to be developed as a small-molecule HIV-1 entry inhibitor for clinical combination therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.